
MineRL
Release 0.4.0

William H. Guss, Brandon Houghton

Jun 22, 2022

TUTORIALS AND GUIDES

1 What is MineRL 3
1.1 Installation . 3
1.2 Hello World: Your First Agent . 4
1.3 Downloading and Sampling The Dataset . 7
1.4 K-means exploration . 9
1.5 Visualizing The Data minerl.viewer . 11
1.6 Interactive Mode minerl.interactor . 12
1.7 Creating A Custom Environment . 13
1.8 Using Minecraft Commands . 18
1.9 General Information . 19
1.10 Environment Handlers . 19
1.11 MineRL Diamond Competition Intro Track Environments . 23
1.12 MineRL Diamond Competition Research Track Environments . 38
1.13 MineRL BASALT Competition Environments . 50
1.14 Performance tips . 58
1.15 Links to papers and projects . 59
1.16 Windows FAQ . 61
1.17 minerl.env . 61
1.18 minerl.data . 66
1.19 minerl.herobraine . 69

2 Indices and tables 91

Python Module Index 93

Index 95

i

ii

MineRL, Release 0.4.0

Welcome to documentation for the MineRL project and its related repositories and components!

TUTORIALS AND GUIDES 1

http://minerl.io

MineRL, Release 0.4.0

2 TUTORIALS AND GUIDES

CHAPTER

ONE

WHAT IS MINERL

MineRL is a research project started at Carnegie Mellon University aimed at developing various aspects of artificial
intelligence within Minecraft. In short MineRL consists of several major components:

• MineRL-v0 Dataset – One of the largest imitation learning datasets with over 60 million frames of recorded
human player data. The dataset includes a set of environments which highlight many of the hardest problems in
modern-day Reinforcement Learning: sparse rewards and hierarchical policies.

• minerl – A rich python3 package for doing artificial intelligence research in Minecraft. This includes two major
submodules. We develop minerl in our spare time, please consider supporting us on Patreon

– minerl.env – A growing set of OpenAI Gym environments in Minecraft. These environments leverage a
synchronous, stable, and fast fork of Microsoft Malmo called MineRLEnv.

– minerl.data – The main python module for ext with the MineRL-v0 dataset

1.1 Installation

Welcome to MineRL! This guide will get you started.

To start using the MineRL dataset and Gym environments comprising MineRL, you’ll need to install the main python
package, minerl.

1. First make sure you have JDK 1.8 installed on your system.

a. Windows installer – On windows go this link and follow the instructions to install JDK 8.

b. On Mac, you can install java8 using homebrew and AdoptOpenJDK (an open source mirror, used here to
get around the fact that Java8 binaries are no longer available directly from Oracle):

brew tap AdoptOpenJDK/openjdk
brew install --cask adoptopenjdk8

c. On Debian based systems (Ubuntu!) you can run the following:

sudo add-apt-repository ppa:openjdk-r/ppa
sudo apt-get update
sudo apt-get install openjdk-8-jdk

2. Now install the minerl package!:

pip3 install --upgrade minerl

3

http://minerl.io/dataset
http://minerl.io/docs/environments
https://www.patreon.com/wguss_imushroom
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

MineRL, Release 0.4.0

Note: You may need the user flag: pip3 install --upgrade minerl --user to install properly.

1.2 Hello World: Your First Agent

With the minerl package installed on your system you can now make your first agent in Minecraft!

To get started, let’s first import the necessary packages

import gym
import minerl

1.2.1 Creating an environment

Now we can choose any one of the many environments included in the minerl package. To learn more about the
environments checkout the environment documentation.

For this tutorial we’ll choose the MineRLNavigateDense-v0 environment. In this task, the agent is challenged with
using a first-person perspective of a random Minecraft map and navigating to a target.

To create the environment, simply invoke gym.make

env = gym.make('MineRLNavigateDense-v0')

Caution: Currently minerl only supports environment rendering in headed environments (servers with monitors
attached).

In order to run minerl environments without a head use a software renderer such as xvfb:
xvfb-run python3 <your_script.py>

Alternatively, you can use an environment variable which automatically adds xvfb when launching MineRL:

MINERL_HEADLESS=1 python3 <your_script.py>

Note: If you’re worried and want to make sure something is happening behind the scenes install a logger before you
create the envrionment.

import logging
logging.basicConfig(level=logging.DEBUG)

env = gym.make('MineRLNavigateDense-v0')

4 Chapter 1. What is MineRL

http://minerl.io/docs/environments/
http://minerl.io/docs/environments/

MineRL, Release 0.4.0

1.2.2 Taking actions

As a warm up let’s create a random agent.
Now we can reset this environment to its first position and get our first observation from the agent by resetting the
environment.

Note: The first time you run this command to complete, it will take a while as it is recompiling Minecraft with the
MineRL simulator mod (can be as long as 15-30 minutes)!

obs = env.reset()

The obs variable will be a dictionary containing the following observations returned by the environment. In the case
of the MineRLNavigate-v0 environment, three observations are returned: pov, an RGB image of the agent’s first
person perspective; compassAngle, a float giving the angle of the agent to its (approximate) target; and inventory, a
dictionary containing the amount of 'dirt' blocks in the agent’s inventory (this is useful for climbing steep inclines).

{
'pov': array([[[63, 63, 68],

[63, 63, 68],
[63, 63, 68],
...,
[92, 92, 100],
[92, 92, 100],
[92, 92, 100]],,

...,

[[95, 118, 176],
[95, 119, 177],
[96, 119, 178],
...,
[93, 116, 172],
[93, 115, 171],
[92, 115, 170]]], dtype=uint8),

'compass': {'angle': array(-63.48639)},
'inventory': {'dirt': 0}

}

Note: To see the exact format of observations returned from and the exact action format expected by env.step for
any environment refer to the environment reference documentation!

Now let’s take actions through the environment until time runs out or the agent dies. To do this, we will use the normal
OpenAI Gym env.step method.

done = False

while not done:
action = env.action_space.sample()
obs, reward, done, _ = env.step(action)

1.2. Hello World: Your First Agent 5

http://minerl.io/docs/environments

MineRL, Release 0.4.0

After running this code the agent should move sporadically until done flag is set to true. If you see a Minecraft window,
it does not update while agent is playing, which is intended behaviour. To confirm that our agent is at least qualitatively
acting randomly, on the right is a plot of the compass angle over the course of the experiment.

1.2.3 No-op actions and a better policy

Now let’s make a hard-coded agent that actually runs towards the target.
To do this at every step of the environment we will take the noop action with a few modifications; in particular, we will
only move forward, jump, attack, and change the agent’s direction to minimize the angle between the agent’s movement
direction and it’s target, compassAngle.

import minerl
import gym
env = gym.make('MineRLNavigateDense-v0')

obs = env.reset()
done = False
net_reward = 0

while not done:
action = env.action_space.noop()

action['camera'] = [0, 0.03*obs["compass"]["angle"]]
action['back'] = 0
action['forward'] = 1
action['jump'] = 1
action['attack'] = 1

obs, reward, done, info = env.step(
action)

net_reward += reward
print("Total reward: ", net_reward)

After running this agent, you should notice marekedly less sporadic behaviour. Plotting both the compassAngle and
the net reward over the episode confirm that this policy performs better than our random policy.

6 Chapter 1. What is MineRL

MineRL, Release 0.4.0

Congratulations! You’ve just made your first agent using the minerl framework!

1.3 Downloading and Sampling The Dataset

1.3.1 Introduction

Now that your agent can act in the environment, we should show it how to leverage human demonstrations.

To get started, let’s download the minimal version of the dataset (two demonstrations from every environment). Since
there are over 20 MineRL environments, this is still a sizeable download, at about 2 GB.

Then we will sample a few state-action-reward-done tuples from the MineRLObtainDiamond-v0 dataset.

1.3.2 Setting up environment variables

The minerl package uses the MINERL_DATA_ROOT environment variable to locate the data directory. Please export
MINERL_DATA_ROOT=/your/local/path/.

(Here are some tutorials on how to set environment variables on Linux/Mac and Windows computers.)

1.3. Downloading and Sampling The Dataset 7

https://phoenixnap.com/kb/linux-set-environment-variable
https://support.shotgunsoftware.com/hc/en-us/articles/114094235653-Setting-global-environment-variables-on-Windows

MineRL, Release 0.4.0

1.3.3 Downloading the MineRL Dataset with minerl.data.download

To download the minimal dataset into MINERL_DATA_ROOT, run the command:

python3 -m minerl.data.download

Note: The full dataset for a particular environment, or for a particular competition (Diamond or Basalt) can be
downloaded using the --environment ENV_NAME and --competition COMPETITION flags.

ENV_NAME is any Gym environment name from the documented environments.

COMPETITION is basalt or diamond.

For more information, run python3 -m minerl.data.download --help.

As an example, to download the full dataset for “MineRLObtainDiamond-v0”, you can run

python3 -m minerl.data.download --environment "MineRLObtainDiamond-v0"

1.3.4 Sampling the Dataset with buffered_batch_iter

Now we can build the dataset for MineRLObtainDiamond-v0

There are two ways of sampling from the MineRL dataset: the deprecated but still supported batch_iter, and
buffered_batch_iter. batch_iter is the legacy method, which we’ve kept in the code to avoid breaking changes, but
we have recently realized that, when using batch_size > 1, batch_iter can fail to return a substantial portion of the data
in the epoch.

If you are not already using `data_pipeline.batch_iter`, we recommend against it, because of these issues
The recommended way of sampling from the dataset is:

from minerl.data import BufferedBatchIter
data = minerl.data.make('MineRLObtainDiamond-v0')
iterator = BufferedBatchIter(data)
for current_state, action, reward, next_state, done \

in iterator.buffered_batch_iter(batch_size=1, num_epochs=1):

Print the POV @ the first step of the sequence
print(current_state['pov'][0])

Print the final reward pf the sequence!
print(reward[-1])

Check if final (next_state) is terminal.
print(done[-1])

... do something with the data.
print("At the end of trajectories the length"

"can be < max_sequence_len", len(reward))

8 Chapter 1. What is MineRL

MineRL, Release 0.4.0

1.3.5 Moderate Human Demonstrations

MineRL-v0 uses community driven demonstrations to help researchers develop sample efficient techniques. Some
of these demonstrations are less than optimal, however others could feature bugs with the client, server errors, or
adversarial behavior.

Using the MineRL viewer, you can help curate this dataset by viewing these demonstrations manually and reporting
bad streams by submitting an issue to github with the following information:

1. The stream name of the stream in question

2. The reason the stream or segment needs to be modified

3. The sample / frame number(s) (shown at the bottom of the viewer)

1.4 K-means exploration

With the 2020 MineRL competition, we introduced vectorized obfuscated environments which abstract non-
visual state information as well as the action space of the agent to be continuous vector spaces. See
MineRLObtainDiamondVectorObf-v0 for documentation on the evaluation environment for that competition.

To use techniques in the MineRL competition that require discrete actions, we can use k-means to quantize the hu-
man demonstrations and give our agent n discrete actions representative of actions taken by humans when solving the
environment.

To get started, let’s download the MineRLTreechopVectorObf-v0 environment.

python -m minerl.data.download --environment 'MineRLTreechopVectorObf-v0'

Note: If you are unable to download the data ensure you have the MINERL_DATA_ROOT env variable set as demonstrated
in data sampling.

Now we load the dataset for MineRLTreechopVectorObf-v0 and find 32 clusters using sklearn learn

from sklearn.cluster import KMeans

dat = minerl.data.make('MineRLTreechopVectorObf-v0')

Load the dataset storing 1000 batches of actions
act_vectors = []
for _, act, _, _,_ in tqdm.tqdm(dat.batch_iter(16, 32, 2, preload_buffer_size=20)):

act_vectors.append(act['vector'])
if len(act_vectors) > 1000:

break

Reshape these the action batches
acts = np.concatenate(act_vectors).reshape(-1, 64)
kmeans_acts = acts[:100000]

Use sklearn to cluster the demonstrated actions
kmeans = KMeans(n_clusters=32, random_state=0).fit(kmeans_acts)

Now we have 32 actions that represent reasonable actions for our agent to take. Let’s take these and improve our random
hello world agent from before.

1.4. K-means exploration 9

https://www.aicrowd.com/challenges/neurips-2020-minerl-competition
http://minerl.io/docs/environments/index.html#competition-environments
http://minerl.io/docs/environments/index.html#minerlobtaindiamondvectorobf-v0
https://en.wikipedia.org/wiki/K-means_clustering
https://minerl.io/docs/environments/index.html#minerltreechopvectorobf-v0
http://minerl.io/docs/tutorials/data_sampling
https://minerl.io/docs/environments/index.html#minerltreechopvectorobf-v0

MineRL, Release 0.4.0

i, net_reward, done, env = 0, 0, False, gym.make('MineRLTreechopVectorObf-v0')
obs = env.reset()

while not done:
Let's use a frame skip of 4 (could you do better than a hard-coded frame skip?)
if i % 4 == 0:

action = {
'vector': kmeans.cluster_centers_[np.random.choice(NUM_CLUSTERS)]

}

obs, reward, done, info = env.step(action)
env.render()

if reward > 0:
print("+{} reward!".format(reward))

net_reward += reward
i += 1

print("Total reward: ", net_reward)

Putting this all together we get:

Full snippet

import gym
import tqdm
import minerl
import numpy as np

from sklearn.cluster import KMeans

dat = minerl.data.make('MineRLTreechopVectorObf-v0')

act_vectors = []
NUM_CLUSTERS = 30

Load the dataset storing 1000 batches of actions
for _, act, _, _, _ in tqdm.tqdm(dat.batch_iter(16, 32, 2, preload_buffer_size=20)):

act_vectors.append(act['vector'])
if len(act_vectors) > 1000:

break

Reshape these the action batches
acts = np.concatenate(act_vectors).reshape(-1, 64)
kmeans_acts = acts[:100000]

Use sklearn to cluster the demonstrated actions
kmeans = KMeans(n_clusters=NUM_CLUSTERS, random_state=0).fit(kmeans_acts)

i, net_reward, done, env = 0, 0, False, gym.make('MineRLTreechopVectorObf-v0')
obs = env.reset()

(continues on next page)

10 Chapter 1. What is MineRL

MineRL, Release 0.4.0

(continued from previous page)

while not done:
Let's use a frame skip of 4 (could you do better than a hard-coded frame skip?)
if i % 4 == 0:

action = {
'vector': kmeans.cluster_centers_[np.random.choice(NUM_CLUSTERS)]

}

obs, reward, done, info = env.step(action)
env.render()

if reward > 0:
print("+{} reward!".format(reward))

net_reward += reward
i += 1

print("Total reward: ", net_reward)

Try comparing this k-means random agent with a random agent using env.action_space.sample()! You should
see the human actions are a much more reasonable way to explore the environment!

1.5 Visualizing The Data minerl.viewer

To help you get familiar with the MineRL dataset, the minerl python package also provides a data trajectory viewer
called minerl.viewer:

Warning: BASALT: minerl.viewer can load BASALT competition data, but is not yet updated to display the
use or equip actions yet.

The minerl.viewer program lets you step through individual trajectories, showing the observation seen by the player,
the action they took (including camera, movement, and any action described by an MineRL environment’s action space),
and the reward they received.

usage: python3 -m minerl.viewer [-h] environment [stream_name]

positional arguments:
environment The MineRL environment to visualize. e.g.

MineRLObtainDiamondDense-v0
stream_name (optional) The name of the trajectory to visualize. e.g.

v4_absolute_zucchini_basilisk-13_36805-50154.

optional arguments:
-h, --help show this help message and exit

Try it out on a random trajectory by running:

Make sure your MINERL_DATA_ROOT is set!
export MINERL_DATA_ROOT='/your/local/path'

(continues on next page)

1.5. Visualizing The Data minerl.viewer 11

MineRL, Release 0.4.0

(continued from previous page)

Visualizes a random trajectory of MineRLObtainDiamondDense-v0
python3 -m minerl.viewer MineRLObtainDiamondDense-v0

Try it out on a specific trajectory by running:

Make sure your MINERL_DATA_ROOT is set!
export MINERL_DATA_ROOT='/your/local/path'
Visualizes a specific trajectory. v4_absolute_zucch...
python3 -m minerl.viewer MineRLTreechop-v0 \

v4_absolute_zucchini_basilisk-13_36805-50154

1.6 Interactive Mode minerl.interactor

Warning: Interactor works in MineRL versions 0.3.7 and 0.4.4 (or above). Install 0.3.7 with pip install
minerl==0.3.7, or the newest MineRL with pip install git+https://github.com/minerllabs/
minerl.git@dev.

Once you have started training agents, the next step is getting them to interact with human players. To help achieve
this, the minerl python package provides a interactive Minecraft client called minerl.interactor:

The minerl.interactor allows you to connect a human-controlled Minecraft client to the Minecraft world that your
agent(s) is using and interact with the agent in real time.

Note: For observation-only mode hit the t key and type /gamemode sp to enter spectator mode and become invisible
to your agent(s).

Enables human interaction with the environment.

To interact with the environment add make_interactive to your agent’s evaluation code and then run the min-
erl.interactor.

For example:

env = gym.make('MineRL...')

set the environment to allow interactive connections on port 6666
and slow the tick speed to 6666.
env.make_interactive(port=6666, realtime=True)

reset the env
env.reset()

interact as normal.
...

Then while the agent is running, you can start the interactor with the following command.

python3 -m minerl.interactor 6666 # replace with the port above.

12 Chapter 1. What is MineRL

MineRL, Release 0.4.0

The interactor will disconnect when the mission resets, but you can connect again with the same command. If an
interactor is already started, it won’t need to be relaunched when running the commnad a second time.

1.7 Creating A Custom Environment

1.7.1 Introduction

MineRL supports many ways to customize environments, including modifying the Minecraft world, adding more ob-
servation data, and changing the rewards agents receive.

MineRL provides support for these modifications using a variety of handlers.

In this tutorial, we will introduce how these handlers work by building a simple parkour environment where an agent
will perform an “MLG water bucket jump” onto a block of gold.

“An MLG water is when a player is falling out of the air, or when a player jumps off of something, and they throw down
water before they hit the ground to break the fall, and prevent themselves from dying by fall damage.” –Sportskeeda

The agent will then mine this gold block to terminate the episode.

See the complete code here.

1.7.2 Setup

Create a Python file named mlg_wb_specs.py

To start building our environment, let’s import the necessary modules

from minerl.herobraine.env_specs.simple_embodiment import SimpleEmbodimentEnvSpec
from minerl.herobraine.hero.handler import Handler
import minerl.herobraine.hero.handlers as handlers
from typing import List

Next, we will add the following variables:

MLGWB_DOC = """
In MLG Water Bucket, an agent must perform an "MLG Water Bucket" jump
"""

MLGWB_LENGTH = 8000

MLGWB_LENGTH specifies how many time steps the environment can last until termination.

1.7. Creating A Custom Environment 13

https://www.sportskeeda.com/minecraft/mlg-minecraft#:~:text=MLG%20Water%20Bucket%20in%20Minecraft&text=MLG%20water%20is%20when%20a,from%20dying%20by%20fall%20damage.
https://github.com/minerllabs/minerl/tree/dev/examples

MineRL, Release 0.4.0

1.7.3 Contruct the Environment Class

In order to create our MineRL Gym environment, we need to inherit from SimpleEmbodimentEnvSpec. This parent
class provides default settings for the environment.

class MLGWB(SimpleEmbodimentEnvSpec):
def __init__(self, *args, **kwargs):

if 'name' not in kwargs:
kwargs['name'] = 'MLGWB-v0'

super().__init__(*args,
max_episode_steps=MLGWB_LENGTH,
reward_threshold=100.0,
**kwargs)

reward_threshold is a number specifying how much reward the agent must get for the episode to be successful.

Now we will implement a number of methods which SimpleEmbodimentEnvSpec requires.

1.7.4 Modify the World

Lets build a custom Minecraft world.

We’ll use the FlatWorldGenerator handler to make a super flat world and pass it a generatorString value to
specify how we want the world layers to be created. “1;7,2x3,2;1” represents 1 layer of grass blocks above 2 layers of
dirt above 1 layer of bedrock. You can use websites like “Minecraft Tools” to easily customize superflat world layers.

We also pass a DrawingDecorator to “draw” blocks into the world.

def create_server_world_generators(self) -> List[Handler]:
return [

handlers.FlatWorldGenerator(generatorString="1;7,2x3,2;1"),
generate a 3x3 square of obsidian high in the air and a gold block
somewhere below it on the ground
handlers.DrawingDecorator("""

<DrawCuboid x1="0" y1="5" z1="-6" x2="0" y2="5" z2="-6" type="gold_block"/>
<DrawCuboid x1="-2" y1="88" z1="-2" x2="2" y2="88" z2="2" type="obsidian"/>

""")
]

Note: Make sure create_server_world_generators and the following functions are indented under the MLGWB
class.

14 Chapter 1. What is MineRL

https://minecraft.tools/en/flat.php?biome=1&bloc_1_nb=1&bloc_1_id=2&bloc_2_nb=2&bloc_2_id=3%2F00&bloc_3_nb=1&bloc_3_id=7&village_size=1&village_distance=32&mineshaft_chance=1&stronghold_count=3&stronghold_distance=32&stronghold_spread=3&oceanmonument_spacing=32&oceanmonument_separation=5&biome_1_distance=32&valid=Create+the+Preset#seed

MineRL, Release 0.4.0

1.7.5 Set the Initial Agent Inventory

Lets now lets use the SimpleInventoryAgentStart handler to give the agent a water bucket and a diamond pickaxe.

Lets also make the agent spawn high in the air (on the obsidian platform) with the AgentStartPlacement handler.

def create_agent_start(self) -> List[Handler]:
return [

make the agent start with these items
handlers.SimpleInventoryAgentStart([

dict(type="water_bucket", quantity=1),
dict(type="diamond_pickaxe", quantity=1)

]),
make the agent start 90 blocks high in the air
handlers.AgentStartPlacement(0, 90, 0, 0, 0)

]

1.7.6 Create Reward Functionality

Lets use the RewardForTouchingBlockType handler so that the agent receives reward for getting to a gold block.

def create_rewardables(self) -> List[Handler]:
return [

reward the agent for touching a gold block (but only once)
handlers.RewardForTouchingBlockType([

{'type':'gold_block', 'behaviour':'onceOnly', 'reward':'50'},
]),
also reward on mission end
handlers.RewardForMissionEnd(50)

]

1.7.7 Construct a Quit Handler

We want the episode to terminate when the agent obtains a gold block.

def create_agent_handlers(self) -> List[Handler]:
return [

make the agent quit when it gets a gold block in its inventory
handlers.AgentQuitFromPossessingItem([

dict(type="gold_block", amount=1)
])

]

1.7. Creating A Custom Environment 15

MineRL, Release 0.4.0

1.7.8 Allow the Agent to Place Water

We want the agent to be able to place the water bucket, but SimpleEmbodimentEnvSpec does not provide
this ability by default. Note that we call super().create_actionables() so that we keep the actions which
SimpleEmbodimentEnvSpec does provide by default (like movement, jumping)

def create_actionables(self) -> List[Handler]:
return super().create_actionables() + [

allow agent to place water
handlers.KeybasedCommandAction("use"),
also allow it to equip the pickaxe
handlers.EquipAction(["diamond_pickaxe"])

]

1.7.9 Give Extra Observations

In addition to the POV image data the agent receives as an observation, lets provide it with compass and lifestats data.
We override create_observables just like the previous step.

def create_observables(self) -> List[Handler]:
return super().create_observables() + [

current location and lifestats are returned as additional
observations
handlers.ObservationFromCurrentLocation(),
handlers.ObservationFromLifeStats()

]

1.7.10 Set the Time

Lets set the time to morning.

def create_server_initial_conditions(self) -> List[Handler]:
return [

Sets time to morning and stops passing of time
handlers.TimeInitialCondition(False, 23000)

]

1.7.11 Other Functions to Implement

SimpleEmbodimentEnvSpec requires that we implement these methods.

see API reference for use cases of these first two functions

def create_server_quit_producers(self):
return []

def create_server_decorators(self) -> List[Handler]:
return []

the episode can terminate when this is True
(continues on next page)

16 Chapter 1. What is MineRL

MineRL, Release 0.4.0

(continued from previous page)

def determine_success_from_rewards(self, rewards: list) -> bool:
return sum(rewards) >= self.reward_threshold

def is_from_folder(self, folder: str) -> bool:
return folder == 'mlgwb'

def get_docstring(self):
return MLGWB_DOC

Congrats! You just made your first MineRL environment. Checkout the herobraine API reference to see many other
ways to modify the world and agent.

See complete environment code here.

1.7.12 Using the Environment

Now you need to solve it

Create a new Python file in the same folder.

Here is some code to get you started:

You should see a Minecaft instance open then minimize. Then, you should see a window that shows the agent’s POV.

import gym
from mlg_wb_specs import MLGWB

In order to use the environment as a gym you need to register it with gym
abs_MLG = MLGWB()
abs_MLG.register()
env = gym.make("MLGWB-v0")

this line might take a couple minutes to run
obs = env.reset()

Renders the environment with the agent taking noops
done = False
while not done:

env.render()
a dictionary of actions. Try indexing it and changing values.
action = env.action_space.noop()
obs, reward, done, info = env.step(action)

See complete solution code here (Python file) or an interactive version here (Jupyter Notebook).

1.7. Creating A Custom Environment 17

https://github.com/minerllabs/minerl/tree/dev/examples/mlg_wb_specs.py
https://github.com/minerllabs/minerl/tree/dev/examples/mlg_wb_solution.py
https://github.com/trigaten/MLGPK_gym/blob/main/solution.ipynb

MineRL, Release 0.4.0

1.8 Using Minecraft Commands

1.8.1 Introduction

MineRL provides support for sending Minecraft commands. In addition to opening up numerous custom environment
possibilities (Minecraft commands can be used to move players, summon or destroy mobs and blocks, reset player
health/food, apply potions effects, and much more), this feature can be very useful for speeding up training.

Warning: This feature is in BETA; it comes with a number of restrictions.

Only messages from the first agent are supported in the multiagent setting.

You must add the ChatAction handler to your envspec.

You can only execute one chat action per time step,

1.8.2 How Can MC Commands speed up training?

Consider an agent attempting the Navigate task. After each attempt to get to the objective the Minecraft world is reset.
Resetting the world is very computationally costly and it would be better to just reset the position, health, and food of
the agent.

This could be accomplished with the following Minecraft commands:

teleport all agents to (x=0, z=0)
/tp @a 0 ~ 0

reset health of all agents
/effect @a minecraft:instant_health 1 100 true

reset food of all agents
/effect @a minecraft:saturation 1 255 true

1.8.3 Adding the ChatAction to your envspec

In order to send Minecraft commands, you need to add the ChatAction handler to your environment’s envspec. See
this tutorial on how to make custom environments and envspecs.

The ChatAction allows the sending of regular Minecraft chat messages as well as Minecraft commands. This can be
accomplished by adding the ChatAction handler to your envspec:

def create_actionables(self) -> List[Handler]:
return super().create_actionables() + [

enable chat
handlers.ChatAction()

]

18 Chapter 1. What is MineRL

https://minecraft.fandom.com/wiki/Commands
https://minerl.readthedocs.io/en/latest/tutorials/custom_environments.html

MineRL, Release 0.4.0

1.8.4 Abstracted Command Sending

All environments which use the ChatAction handler will support the set_next_chat_message function. This func-
tion takes a string and sends it as a chat message the next time the environment is stepped:

no actions
actions = {}
env.set_next_chat_message("/gamemode @a adventure")
sets the gamemode of all players to adventure
env.step(actions)
the chat message is not executed again;
it gets cleared each time step() is called
env.step(actions)
env.set_next_chat_message("/tp @r 320 54 66")
teleports a random agent to the given coordinates
env.step(actions)

1.8.5 Advanced use

If for some reason you need to execute multiple commands in the same time step, you can either spawn in a chain of
Minecraft Command Blocks or load a world from the file with a chain of command blocks. This level of complexity
shouldn’t be needed but could be useful if you need to execute many distinct commands and don’t want to spread them
over multiple time steps.

1.9 General Information

The minerl package includes several environments as follows. This page describes each of the included environments,
provides usage samples, and describes the exact action and observation space provided by each environment!

Caution: In the MineRL Diamond Competition, many environments are provided for training. How-
ever, competition agents will only be evaluated in the MineRLObtainDiamond-v0 (Intro track) and
MineRLObtainDiamondVectorObf-v0 (Research track) environments which have sparse rewards. For more de-
tails see MineRLObtainDiamond-v0 and MineRLObtainDiamondVectorObf-v0.

Note: All environments offer a default no-op action via env.action_space.no_op() and a random action via
env.action_space.sample().

1.10 Environment Handlers

Minecraft is an extremely complex environment which provides players with visual, auditory, and informational ob-
servation of many complex data types. Furthermore, players interact with Minecraft using more than just embodied
actions: players can craft, build, destroy, smelt, enchant, manage their inventory, and even communicate with other
players via a text chat.

To provide a unified interface with which agents can obtain and perform similar observations and actions as players, we
have provided first-class for support for this multi-modality in the environment: the observation and action spaces of

1.9. General Information 19

MineRL, Release 0.4.0

environments are gym.spaces.Dict spaces. These observation and action dictionaries are comprised of individual
fields we call handlers.

Note: In the documentation of every environment we provide a listing of the exact gym.space of the observations
returned by and actions expected by the environment’s step function. We are slowly building documentation for these
handlers, and you can click those highlighted with blue for more information!

1.10.1 Environment Handlers

Minecraft is an extremely complex environment which provides players with visual, auditory, and informational ob-
servation of many complex data types. Furthermore, players interact with Minecraft using more than just embodied
actions: players can craft, build, destroy, smelt, enchant, manage their inventory, and even communicate with other
players via a text chat.

To provide a unified interface with which agents can obtain and perform similar observations and actions as players, we
have provided first-class for support for this multi-modality in the environment: the observation and action spaces of
environments are gym.spaces.Dict spaces. These observation and action dictionaries are comprised of individual
fields we call handlers.

Note: In the documentation of every environment we provide a listing of the exact gym.space of the observations
returned by and actions expected by the environment’s step function. We are slowly building documentation for these
handlers, and you can click those highlighted with blue for more information!

1.10.2 Spaces

Enum Spaces

Some observation and action spaces are Enum types. Examples include the equip observation and the equip action.

Observation and action spaces that are Enum are encoded as strings by default (e.g. “none”, “log”, and “sandstone#2”)
when they are returned from env.step() and env.reset(), or yielded from minerl.data.DataPipeline.
batch_iter().

When building an action to pass into env.step(act), the Enum component of the action dict can be encoded as either
a string or an integer.

Tip: The Enum integer value that corresponds to each Enum string value can be accessed via Enum.
values_map[string_value]. For example, to get the integer value corresponding to the equip action
“dirt” in MineRLObtainDiamond or MineRLBasaltBuildVillageHouse, you can call env.action_space.
spaces["equip"].values_map["dirt"].

20 Chapter 1. What is MineRL

MineRL, Release 0.4.0

1.10.3 Observations

Visual Observations - pov, third-person

pov : Box(width, height, nchannels)

An RGB image observation of the agent’s first-person perspective.

Type
np.uint8

third-person : Box(width, height, nchannels)

An RGB image observation of the agent’s third-person perspective.

Warning: This observation is not yet supported by any environment.

Type
np.uint8

compass-observation : Box(1)

The current position of the minecraft:compass object from 0 (behind agent left) to 0.5 in front of agent to 1
(behind agent right)

Note: This observation uses the default Minecraft game logic which includes compass needle momentum. As
such it may change even when the agent has stoped moving!

Equip Observations - equipped_items

equipped_items.mainhand.type : Enum('none', 'air', ..., 'other'))

This observation is an Enum type. See Enum Spaces for more information.

The type of the item that the player has equipped in the mainhand slot. If the mainhand slot is empty then the
value is ‘air’. If the mainhand slot contains an item not inside this observation space, then the value is ‘other’.

Type
np.int64

Shape
[1]

1.10.4 Actions

Camera Control - camera

camera : Box(2) [delta_pitch, delta_yaw]

This action changes the orientation of the agent’s head by the corresponding number of degrees. When the pov
observation is available, the camera changes its orientation pitch by the first component and its yaw by the second
component. Both delta_pitch and delta_yaw are limited to [-180, 180] inclusive

Type
np.float32

1.10. Environment Handlers 21

MineRL, Release 0.4.0

Shape
[2]

attack : Discrete(1) [attack]

This action causes the agent to attack.

Type
np.float32

Shape
[1]

Tool Control - equip and use

equip : Enum('none', 'air', ..., 'other'))

This is action is an Enum type. See Enum Spaces for more information.

This action equips the first instance of the specified item from the agents inventory to the main hand if the specified
item is present, otherwise does nothing. air matches any empty slot in an agent’s inventory and functions as an
un-equip, or equip-nothing action.

Type
np.int64

Shape
[1]

Note: equip 'none' and equip 'other' are both no-op actions. In other words, they leave the currently
equipped item unchanged. However, in the MineRL dataset, other takes on a special meaning. other is the
wildcard equip action that is recorded in the dataset whenever a player equipped an item that wasn’t included in
this action space’s Enum.

Warning: env.step(act) typically will not process the equip action for two ticks (i.e., you will not see the
observation value equipped_items change until two more calls to env.step.)

This is due to a limitation with the current version of Malmo, our Minecraft backend.

use : Discrete(1) [use]

This action is equivalent to right-clicking in Minecraft. It causes the agent to use the item it is holding in the
mainhand slot, or to open doors or gates when it is facing an applicable Minecraft structure.

Type
np.int64

Shape
[1]

22 Chapter 1. What is MineRL

MineRL, Release 0.4.0

1.11 MineRL Diamond Competition Intro Track Environments

1.11.1 MineRLTreechop-v0

In treechop, the agent must collect 64 minecraft:log. This replicates a common scenario in Minecraft, as logs are
necessary to craft a large amount of items in the game and are a key resource in Minecraft.

The agent begins in a forest biome (near many trees) with an iron axe for cutting trees. The agent is given +1 reward
for obtaining each unit of wood, and the episode terminates once the agent obtains 64 units.

Observation Space

Dict({
"pov": "Box(low=0, high=255, shape=(64, 64, 3))"

})

Action Space

Dict({
"attack": "Discrete(2)",
"back": "Discrete(2)",
"camera": "Box(low=-180.0, high=180.0, shape=(2,))",
"forward": "Discrete(2)",
"jump": "Discrete(2)",
"left": "Discrete(2)",
"right": "Discrete(2)",
"sneak": "Discrete(2)",
"sprint": "Discrete(2)"

})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLTreechop-v0") # A MineRLTreechop-v0 env

obs = env.reset()
done = False

while not done:
Take a no-op through the environment.
obs, rew, done, _ = env.step(env.action_space.noop())

(continues on next page)

1.11. MineRL Diamond Competition Intro Track Environments 23

MineRL, Release 0.4.0

(continued from previous page)

Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLTreechop-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):

Do something

1.11.2 MineRLNavigate-v0

In this task, the agent must move to a goal location denoted by a diamond block. This represents a basic primitive
used in many tasks throughout Minecraft. In addition to standard observations, the agent has access to a “compass”
observation, which points near the goal location, 64 meters from the start location. The goal has a small random
horizontal offset from the compass location and may be slightly below surface level. On the goal location is a unique
block, so the agent must find the final goal by searching based on local visual features.

The agent is given a sparse reward (+100 upon reaching the goal, at which point the episode terminates). This variant
of the environment is sparse.
In this environment, the agent spawns on a random survival map.

Observation Space

Dict({
"compass": {

"angle": "Box(low=-180.0, high=180.0, shape=())"
},
"inventory": {

"dirt": "Box(low=0, high=2304, shape=())"
},
"pov": "Box(low=0, high=255, shape=(64, 64, 3))"

})

24 Chapter 1. What is MineRL

MineRL, Release 0.4.0

Action Space

Dict({
"attack": "Discrete(2)",
"back": "Discrete(2)",
"camera": "Box(low=-180.0, high=180.0, shape=(2,))",
"forward": "Discrete(2)",
"jump": "Discrete(2)",
"left": "Discrete(2)",
"place": "Enum(dirt,none)",
"right": "Discrete(2)",
"sneak": "Discrete(2)",
"sprint": "Discrete(2)"

})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLNavigate-v0") # A MineRLNavigate-v0 env

obs = env.reset()
done = False

while not done:
Take a no-op through the environment.
obs, rew, done, _ = env.step(env.action_space.noop())
Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLNavigate-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):

Do something

1.11.3 MineRLNavigateDense-v0

In this task, the agent must move to a goal location denoted by a diamond block. This represents a basic primitive
used in many tasks throughout Minecraft. In addition to standard observations, the agent has access to a “compass”
observation, which points near the goal location, 64 meters from the start location. The goal has a small random

1.11. MineRL Diamond Competition Intro Track Environments 25

MineRL, Release 0.4.0

horizontal offset from the compass location and may be slightly below surface level. On the goal location is a unique
block, so the agent must find the final goal by searching based on local visual features.

The agent is given a sparse reward (+100 upon reaching the goal, at which point the episode terminates). This variant
of the environment is dense reward-shaped where the agent is given a reward every tick for how much closer (or
negative reward for farther) the agent gets to the target.
In this environment, the agent spawns on a random survival map.

Observation Space

Dict({
"compass": {

"angle": "Box(low=-180.0, high=180.0, shape=())"
},
"inventory": {

"dirt": "Box(low=0, high=2304, shape=())"
},
"pov": "Box(low=0, high=255, shape=(64, 64, 3))"

})

Action Space

Dict({
"attack": "Discrete(2)",
"back": "Discrete(2)",
"camera": "Box(low=-180.0, high=180.0, shape=(2,))",
"forward": "Discrete(2)",
"jump": "Discrete(2)",
"left": "Discrete(2)",
"place": "Enum(dirt,none)",
"right": "Discrete(2)",
"sneak": "Discrete(2)",
"sprint": "Discrete(2)"

})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLNavigateDense-v0") # A MineRLNavigateDense-v0 env

obs = env.reset()
done = False

while not done:
Take a no-op through the environment.
obs, rew, done, _ = env.step(env.action_space.noop())
Do something

(continues on next page)

26 Chapter 1. What is MineRL

MineRL, Release 0.4.0

(continued from previous page)

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLNavigateDense-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):

Do something

1.11.4 MineRLNavigateExtreme-v0

In this task, the agent must move to a goal location denoted by a diamond block. This represents a basic primitive
used in many tasks throughout Minecraft. In addition to standard observations, the agent has access to a “compass”
observation, which points near the goal location, 64 meters from the start location. The goal has a small random
horizontal offset from the compass location and may be slightly below surface level. On the goal location is a unique
block, so the agent must find the final goal by searching based on local visual features.

The agent is given a sparse reward (+100 upon reaching the goal, at which point the episode terminates). This variant
of the environment is sparse.
In this environment, the agent spawns in an extreme hills biome.

Observation Space

Dict({
"compass": {

"angle": "Box(low=-180.0, high=180.0, shape=())"
},
"inventory": {

"dirt": "Box(low=0, high=2304, shape=())"
},
"pov": "Box(low=0, high=255, shape=(64, 64, 3))"

})

Action Space

Dict({
"attack": "Discrete(2)",
"back": "Discrete(2)",
"camera": "Box(low=-180.0, high=180.0, shape=(2,))",
"forward": "Discrete(2)",
"jump": "Discrete(2)",
"left": "Discrete(2)",
"place": "Enum(dirt,none)",
"right": "Discrete(2)",

1.11. MineRL Diamond Competition Intro Track Environments 27

MineRL, Release 0.4.0

"sneak": "Discrete(2)",
"sprint": "Discrete(2)"

})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLNavigateExtreme-v0") # A MineRLNavigateExtreme-v0 env

obs = env.reset()
done = False

while not done:
Take a no-op through the environment.
obs, rew, done, _ = env.step(env.action_space.noop())
Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLNavigateExtreme-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):

Do something

1.11.5 MineRLNavigateExtremeDense-v0

In this task, the agent must move to a goal location denoted by a diamond block. This represents a basic primitive
used in many tasks throughout Minecraft. In addition to standard observations, the agent has access to a “compass”
observation, which points near the goal location, 64 meters from the start location. The goal has a small random
horizontal offset from the compass location and may be slightly below surface level. On the goal location is a unique
block, so the agent must find the final goal by searching based on local visual features.

The agent is given a sparse reward (+100 upon reaching the goal, at which point the episode terminates). This variant
of the environment is dense reward-shaped where the agent is given a reward every tick for how much closer (or
negative reward for farther) the agent gets to the target.
In this environment, the agent spawns in an extreme hills biome.

28 Chapter 1. What is MineRL

MineRL, Release 0.4.0

Observation Space

Dict({
"compass": {

"angle": "Box(low=-180.0, high=180.0, shape=())"
},
"inventory": {

"dirt": "Box(low=0, high=2304, shape=())"
},
"pov": "Box(low=0, high=255, shape=(64, 64, 3))"

})

Action Space

Dict({
"attack": "Discrete(2)",
"back": "Discrete(2)",
"camera": "Box(low=-180.0, high=180.0, shape=(2,))",
"forward": "Discrete(2)",
"jump": "Discrete(2)",
"left": "Discrete(2)",
"place": "Enum(dirt,none)",
"right": "Discrete(2)",
"sneak": "Discrete(2)",
"sprint": "Discrete(2)"

})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLNavigateExtremeDense-v0") # A MineRLNavigateExtremeDense-v0 env

obs = env.reset()
done = False

while not done:
Take a no-op through the environment.
obs, rew, done, _ = env.step(env.action_space.noop())
Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLNavigateExtremeDense-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):

Do something

1.11. MineRL Diamond Competition Intro Track Environments 29

MineRL, Release 0.4.0

1.11.6 MineRLObtainDiamond-v0

In this environment the agent is required to obtain a diamond. The agent begins in a random starting location on a
random survival map without any items, matching the normal starting conditions for human players in Minecraft. The
agent is given access to a selected summary of its inventory and GUI free crafting, smelting, and inventory management
actions.

During an episode the agent is rewarded only once per item the first time it obtains that item in the requisite item
hierarchy to obtaining a diamond. The rewards for each item are given here:

<Item reward="1" type="log" />
<Item reward="2" type="planks" />
<Item reward="4" type="stick" />
<Item reward="4" type="crafting_table" />
<Item reward="8" type="wooden_pickaxe" />
<Item reward="16" type="cobblestone" />
<Item reward="32" type="furnace" />
<Item reward="32" type="stone_pickaxe" />
<Item reward="64" type="iron_ore" />
<Item reward="128" type="iron_ingot" />
<Item reward="256" type="iron_pickaxe" />
<Item reward="1024" type="diamond" />

Observation Space

Dict({
"equipped_items": {

"mainhand": {
"damage": "Box(low=-1, high=1562, shape=())",
"maxDamage": "Box(low=-1, high=1562, shape=())",
"type": "Enum(air,iron_axe,iron_pickaxe,none,other,stone_axe,stone_

→˓pickaxe,wooden_axe,wooden_pickaxe)"
}

},
"inventory": {

"coal": "Box(low=0, high=2304, shape=())",
"cobblestone": "Box(low=0, high=2304, shape=())",
"crafting_table": "Box(low=0, high=2304, shape=())",
"dirt": "Box(low=0, high=2304, shape=())",
"furnace": "Box(low=0, high=2304, shape=())",
"iron_axe": "Box(low=0, high=2304, shape=())",
"iron_ingot": "Box(low=0, high=2304, shape=())",
"iron_ore": "Box(low=0, high=2304, shape=())",
"iron_pickaxe": "Box(low=0, high=2304, shape=())",
"log": "Box(low=0, high=2304, shape=())",
"planks": "Box(low=0, high=2304, shape=())",
"stick": "Box(low=0, high=2304, shape=())",

30 Chapter 1. What is MineRL

MineRL, Release 0.4.0

"stone": "Box(low=0, high=2304, shape=())",
"stone_axe": "Box(low=0, high=2304, shape=())",
"stone_pickaxe": "Box(low=0, high=2304, shape=())",
"torch": "Box(low=0, high=2304, shape=())",
"wooden_axe": "Box(low=0, high=2304, shape=())",
"wooden_pickaxe": "Box(low=0, high=2304, shape=())"

},
"pov": "Box(low=0, high=255, shape=(64, 64, 3))"

})

Action Space

Dict({
"attack": "Discrete(2)",
"back": "Discrete(2)",
"camera": "Box(low=-180.0, high=180.0, shape=(2,))",
"craft": "Enum(crafting_table,none,planks,stick,torch)",
"equip": "Enum(air,iron_axe,iron_pickaxe,none,stone_axe,stone_pickaxe,wooden_axe,

→˓wooden_pickaxe)",
"forward": "Discrete(2)",
"jump": "Discrete(2)",
"left": "Discrete(2)",
"nearbyCraft": "Enum(furnace,iron_axe,iron_pickaxe,none,stone_axe,stone_pickaxe,

→˓wooden_axe,wooden_pickaxe)",
"nearbySmelt": "Enum(coal,iron_ingot,none)",
"place": "Enum(cobblestone,crafting_table,dirt,furnace,none,stone,torch)",
"right": "Discrete(2)",
"sneak": "Discrete(2)",
"sprint": "Discrete(2)"

})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLObtainDiamond-v0") # A MineRLObtainDiamond-v0 env

obs = env.reset()
done = False

while not done:
Take a no-op through the environment.
obs, rew, done, _ = env.step(env.action_space.noop())
Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLObtainDiamond-v0")

(continues on next page)

1.11. MineRL Diamond Competition Intro Track Environments 31

MineRL, Release 0.4.0

(continued from previous page)

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):

Do something

1.11.7 MineRLObtainDiamondDense-v0

In this environment the agent is required to obtain a diamond. The agent begins in a random starting location on a
random survival map without any items, matching the normal starting conditions for human players in Minecraft. The
agent is given access to a selected summary of its inventory and GUI free crafting, smelting, and inventory management
actions.

During an episode the agent is rewarded every time it obtains an item in the requisite item hierarchy to obtaining a
diamond. The rewards for each item are given here:

<Item reward="1" type="log" />
<Item reward="2" type="planks" />
<Item reward="4" type="stick" />
<Item reward="4" type="crafting_table" />
<Item reward="8" type="wooden_pickaxe" />
<Item reward="16" type="cobblestone" />
<Item reward="32" type="furnace" />
<Item reward="32" type="stone_pickaxe" />
<Item reward="64" type="iron_ore" />
<Item reward="128" type="iron_ingot" />
<Item reward="256" type="iron_pickaxe" />
<Item reward="1024" type="diamond" />

Observation Space

Dict({
"equipped_items": {

"mainhand": {
"damage": "Box(low=-1, high=1562, shape=())",
"maxDamage": "Box(low=-1, high=1562, shape=())",
"type": "Enum(air,iron_axe,iron_pickaxe,none,other,stone_axe,stone_

→˓pickaxe,wooden_axe,wooden_pickaxe)"
}

},
"inventory": {

"coal": "Box(low=0, high=2304, shape=())",
"cobblestone": "Box(low=0, high=2304, shape=())",
"crafting_table": "Box(low=0, high=2304, shape=())",
"dirt": "Box(low=0, high=2304, shape=())",
"furnace": "Box(low=0, high=2304, shape=())",

32 Chapter 1. What is MineRL

MineRL, Release 0.4.0

"iron_axe": "Box(low=0, high=2304, shape=())",
"iron_ingot": "Box(low=0, high=2304, shape=())",
"iron_ore": "Box(low=0, high=2304, shape=())",
"iron_pickaxe": "Box(low=0, high=2304, shape=())",
"log": "Box(low=0, high=2304, shape=())",
"planks": "Box(low=0, high=2304, shape=())",
"stick": "Box(low=0, high=2304, shape=())",
"stone": "Box(low=0, high=2304, shape=())",
"stone_axe": "Box(low=0, high=2304, shape=())",
"stone_pickaxe": "Box(low=0, high=2304, shape=())",
"torch": "Box(low=0, high=2304, shape=())",
"wooden_axe": "Box(low=0, high=2304, shape=())",
"wooden_pickaxe": "Box(low=0, high=2304, shape=())"

},
"pov": "Box(low=0, high=255, shape=(64, 64, 3))"

})

Action Space

Dict({
"attack": "Discrete(2)",
"back": "Discrete(2)",
"camera": "Box(low=-180.0, high=180.0, shape=(2,))",
"craft": "Enum(crafting_table,none,planks,stick,torch)",
"equip": "Enum(air,iron_axe,iron_pickaxe,none,stone_axe,stone_pickaxe,wooden_axe,

→˓wooden_pickaxe)",
"forward": "Discrete(2)",
"jump": "Discrete(2)",
"left": "Discrete(2)",
"nearbyCraft": "Enum(furnace,iron_axe,iron_pickaxe,none,stone_axe,stone_pickaxe,

→˓wooden_axe,wooden_pickaxe)",
"nearbySmelt": "Enum(coal,iron_ingot,none)",
"place": "Enum(cobblestone,crafting_table,dirt,furnace,none,stone,torch)",
"right": "Discrete(2)",
"sneak": "Discrete(2)",
"sprint": "Discrete(2)"

})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLObtainDiamondDense-v0") # A MineRLObtainDiamondDense-v0 env

obs = env.reset()
done = False

while not done:
Take a no-op through the environment.

(continues on next page)

1.11. MineRL Diamond Competition Intro Track Environments 33

MineRL, Release 0.4.0

(continued from previous page)

obs, rew, done, _ = env.step(env.action_space.noop())
Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLObtainDiamondDense-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):

Do something

1.11.8 MineRLObtainIronPickaxe-v0

In this environment the agent is required to obtain an iron pickaxe. The agent begins in a random starting location, on a
random survival map, without any items, matching the normal starting conditions for human players in Minecraft. The
agent is given access to a selected view of its inventory and GUI free crafting, smelting, and inventory management
actions.

During an episode the agent is rewarded only once per item the first time it obtains that item in the requisite item
hierarchy for obtaining an iron pickaxe. The reward for each item is given here:

<Item amount="1" reward="1" type="log" />
<Item amount="1" reward="2" type="planks" />
<Item amount="1" reward="4" type="stick" />
<Item amount="1" reward="4" type="crafting_table" />
<Item amount="1" reward="8" type="wooden_pickaxe" />
<Item amount="1" reward="16" type="cobblestone" />
<Item amount="1" reward="32" type="furnace" />
<Item amount="1" reward="32" type="stone_pickaxe" />
<Item amount="1" reward="64" type="iron_ore" />
<Item amount="1" reward="128" type="iron_ingot" />
<Item amount="1" reward="256" type="iron_pickaxe" />

Observation Space

Dict({
"equipped_items": {

"mainhand": {
"damage": "Box(low=-1, high=1562, shape=())",
"maxDamage": "Box(low=-1, high=1562, shape=())",
"type": "Enum(air,iron_axe,iron_pickaxe,none,other,stone_axe,stone_

→˓pickaxe,wooden_axe,wooden_pickaxe)"
}

},

34 Chapter 1. What is MineRL

MineRL, Release 0.4.0

"inventory": {
"coal": "Box(low=0, high=2304, shape=())",
"cobblestone": "Box(low=0, high=2304, shape=())",
"crafting_table": "Box(low=0, high=2304, shape=())",
"dirt": "Box(low=0, high=2304, shape=())",
"furnace": "Box(low=0, high=2304, shape=())",
"iron_axe": "Box(low=0, high=2304, shape=())",
"iron_ingot": "Box(low=0, high=2304, shape=())",
"iron_ore": "Box(low=0, high=2304, shape=())",
"iron_pickaxe": "Box(low=0, high=2304, shape=())",
"log": "Box(low=0, high=2304, shape=())",
"planks": "Box(low=0, high=2304, shape=())",
"stick": "Box(low=0, high=2304, shape=())",
"stone": "Box(low=0, high=2304, shape=())",
"stone_axe": "Box(low=0, high=2304, shape=())",
"stone_pickaxe": "Box(low=0, high=2304, shape=())",
"torch": "Box(low=0, high=2304, shape=())",
"wooden_axe": "Box(low=0, high=2304, shape=())",
"wooden_pickaxe": "Box(low=0, high=2304, shape=())"

},
"pov": "Box(low=0, high=255, shape=(64, 64, 3))"

})

Action Space

Dict({
"attack": "Discrete(2)",
"back": "Discrete(2)",
"camera": "Box(low=-180.0, high=180.0, shape=(2,))",
"craft": "Enum(crafting_table,none,planks,stick,torch)",
"equip": "Enum(air,iron_axe,iron_pickaxe,none,stone_axe,stone_pickaxe,wooden_axe,

→˓wooden_pickaxe)",
"forward": "Discrete(2)",
"jump": "Discrete(2)",
"left": "Discrete(2)",
"nearbyCraft": "Enum(furnace,iron_axe,iron_pickaxe,none,stone_axe,stone_pickaxe,

→˓wooden_axe,wooden_pickaxe)",
"nearbySmelt": "Enum(coal,iron_ingot,none)",
"place": "Enum(cobblestone,crafting_table,dirt,furnace,none,stone,torch)",
"right": "Discrete(2)",
"sneak": "Discrete(2)",
"sprint": "Discrete(2)"

})

1.11. MineRL Diamond Competition Intro Track Environments 35

MineRL, Release 0.4.0

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLObtainIronPickaxe-v0") # A MineRLObtainIronPickaxe-v0 env

obs = env.reset()
done = False

while not done:
Take a no-op through the environment.
obs, rew, done, _ = env.step(env.action_space.noop())
Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLObtainIronPickaxe-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):

Do something

1.11.9 MineRLObtainIronPickaxeDense-v0

In this environment the agent is required to obtain an iron pickaxe. The agent begins in a random starting location, on a
random survival map, without any items, matching the normal starting conditions for human players in Minecraft. The
agent is given access to a selected view of its inventory and GUI free crafting, smelting, and inventory management
actions.

During an episode the agent is rewarded every time it obtains an item in the requisite item hierarchy for obtaining
an iron pickaxe. The reward for each item is given here:

<Item amount="1" reward="1" type="log" />
<Item amount="1" reward="2" type="planks" />
<Item amount="1" reward="4" type="stick" />
<Item amount="1" reward="4" type="crafting_table" />
<Item amount="1" reward="8" type="wooden_pickaxe" />
<Item amount="1" reward="16" type="cobblestone" />
<Item amount="1" reward="32" type="furnace" />
<Item amount="1" reward="32" type="stone_pickaxe" />
<Item amount="1" reward="64" type="iron_ore" />
<Item amount="1" reward="128" type="iron_ingot" />
<Item amount="1" reward="256" type="iron_pickaxe" />

36 Chapter 1. What is MineRL

MineRL, Release 0.4.0

Observation Space

Dict({
"equipped_items": {

"mainhand": {
"damage": "Box(low=-1, high=1562, shape=())",
"maxDamage": "Box(low=-1, high=1562, shape=())",
"type": "Enum(air,iron_axe,iron_pickaxe,none,other,stone_axe,stone_

→˓pickaxe,wooden_axe,wooden_pickaxe)"
}

},
"inventory": {

"coal": "Box(low=0, high=2304, shape=())",
"cobblestone": "Box(low=0, high=2304, shape=())",
"crafting_table": "Box(low=0, high=2304, shape=())",
"dirt": "Box(low=0, high=2304, shape=())",
"furnace": "Box(low=0, high=2304, shape=())",
"iron_axe": "Box(low=0, high=2304, shape=())",
"iron_ingot": "Box(low=0, high=2304, shape=())",
"iron_ore": "Box(low=0, high=2304, shape=())",
"iron_pickaxe": "Box(low=0, high=2304, shape=())",
"log": "Box(low=0, high=2304, shape=())",
"planks": "Box(low=0, high=2304, shape=())",
"stick": "Box(low=0, high=2304, shape=())",
"stone": "Box(low=0, high=2304, shape=())",
"stone_axe": "Box(low=0, high=2304, shape=())",
"stone_pickaxe": "Box(low=0, high=2304, shape=())",
"torch": "Box(low=0, high=2304, shape=())",
"wooden_axe": "Box(low=0, high=2304, shape=())",
"wooden_pickaxe": "Box(low=0, high=2304, shape=())"

},
"pov": "Box(low=0, high=255, shape=(64, 64, 3))"

})

Action Space

Dict({
"attack": "Discrete(2)",
"back": "Discrete(2)",
"camera": "Box(low=-180.0, high=180.0, shape=(2,))",
"craft": "Enum(crafting_table,none,planks,stick,torch)",
"equip": "Enum(air,iron_axe,iron_pickaxe,none,stone_axe,stone_pickaxe,wooden_axe,

→˓wooden_pickaxe)",
"forward": "Discrete(2)",
"jump": "Discrete(2)",
"left": "Discrete(2)",
"nearbyCraft": "Enum(furnace,iron_axe,iron_pickaxe,none,stone_axe,stone_pickaxe,

→˓wooden_axe,wooden_pickaxe)",
"nearbySmelt": "Enum(coal,iron_ingot,none)",
"place": "Enum(cobblestone,crafting_table,dirt,furnace,none,stone,torch)",
"right": "Discrete(2)",
"sneak": "Discrete(2)",
"sprint": "Discrete(2)"

1.11. MineRL Diamond Competition Intro Track Environments 37

MineRL, Release 0.4.0

})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLObtainIronPickaxeDense-v0") # A MineRLObtainIronPickaxeDense-v0␣
→˓env

obs = env.reset()
done = False

while not done:
Take a no-op through the environment.
obs, rew, done, _ = env.step(env.action_space.noop())
Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLObtainIronPickaxeDense-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):

Do something

1.12 MineRL Diamond Competition Research Track Environments

1.12.1 MineRLTreechopVectorObf-v0

In treechop, the agent must collect 64 minecraft:log. This replicates a common scenario in Minecraft, as logs are
necessary to craft a large amount of items in the game and are a key resource in Minecraft.

The agent begins in a forest biome (near many trees) with an iron axe for cutting trees. The agent is given +1 reward
for obtaining each unit of wood, and the episode terminates once the agent obtains 64 units.

38 Chapter 1. What is MineRL

MineRL, Release 0.4.0

Observation Space

Dict({
"pov": "Box(low=0, high=255, shape=(64, 64, 3))",
"vector": "Box(low=-1.2000000476837158, high=1.2000000476837158, shape=(64,))"

})

Action Space

Dict({
"vector": "Box(low=-1.0499999523162842, high=1.0499999523162842, shape=(64,))"

})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLTreechopVectorObf-v0") # A MineRLTreechopVectorObf-v0 env

obs = env.reset()
done = False

while not done:
Take a no-op through the environment.
obs, rew, done, _ = env.step(env.action_space.noop())
Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLTreechopVectorObf-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):

Do something

1.12.2 MineRLNavigateVectorObf-v0

In this task, the agent must move to a goal location denoted by a diamond block. This represents a basic primitive
used in many tasks throughout Minecraft. In addition to standard observations, the agent has access to a “compass”
observation, which points near the goal location, 64 meters from the start location. The goal has a small random
horizontal offset from the compass location and may be slightly below surface level. On the goal location is a unique
block, so the agent must find the final goal by searching based on local visual features.

1.12. MineRL Diamond Competition Research Track Environments 39

MineRL, Release 0.4.0

The agent is given a sparse reward (+100 upon reaching the goal, at which point the episode terminates). This variant
of the environment is sparse.
In this environment, the agent spawns on a random survival map.

Observation Space

Dict({
"pov": "Box(low=0, high=255, shape=(64, 64, 3))",
"vector": "Box(low=-1.2000000476837158, high=1.2000000476837158, shape=(64,))"

})

Action Space

Dict({
"vector": "Box(low=-1.0499999523162842, high=1.0499999523162842, shape=(64,))"

})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLNavigateVectorObf-v0") # A MineRLNavigateVectorObf-v0 env

obs = env.reset()
done = False

while not done:
Take a no-op through the environment.
obs, rew, done, _ = env.step(env.action_space.noop())
Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLNavigateVectorObf-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):

Do something

40 Chapter 1. What is MineRL

MineRL, Release 0.4.0

1.12.3 MineRLNavigateDenseVectorObf-v0

In this task, the agent must move to a goal location denoted by a diamond block. This represents a basic primitive
used in many tasks throughout Minecraft. In addition to standard observations, the agent has access to a “compass”
observation, which points near the goal location, 64 meters from the start location. The goal has a small random
horizontal offset from the compass location and may be slightly below surface level. On the goal location is a unique
block, so the agent must find the final goal by searching based on local visual features.

The agent is given a sparse reward (+100 upon reaching the goal, at which point the episode terminates). This variant
of the environment is dense reward-shaped where the agent is given a reward every tick for how much closer (or
negative reward for farther) the agent gets to the target.
In this environment, the agent spawns on a random survival map.

Observation Space

Dict({
"pov": "Box(low=0, high=255, shape=(64, 64, 3))",
"vector": "Box(low=-1.2000000476837158, high=1.2000000476837158, shape=(64,))"

})

Action Space

Dict({
"vector": "Box(low=-1.0499999523162842, high=1.0499999523162842, shape=(64,))"

})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLNavigateDenseVectorObf-v0") # A MineRLNavigateDenseVectorObf-v0␣
→˓env

obs = env.reset()
done = False

while not done:
Take a no-op through the environment.
obs, rew, done, _ = env.step(env.action_space.noop())
Do something

######################################

(continues on next page)

1.12. MineRL Diamond Competition Research Track Environments 41

MineRL, Release 0.4.0

(continued from previous page)

Sample some data from the dataset!
data = minerl.data.make("MineRLNavigateDenseVectorObf-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):

Do something

1.12.4 MineRLNavigateExtremeVectorObf-v0

In this task, the agent must move to a goal location denoted by a diamond block. This represents a basic primitive
used in many tasks throughout Minecraft. In addition to standard observations, the agent has access to a “compass”
observation, which points near the goal location, 64 meters from the start location. The goal has a small random
horizontal offset from the compass location and may be slightly below surface level. On the goal location is a unique
block, so the agent must find the final goal by searching based on local visual features.

The agent is given a sparse reward (+100 upon reaching the goal, at which point the episode terminates). This variant
of the environment is sparse.
In this environment, the agent spawns in an extreme hills biome.

Observation Space

Dict({
"pov": "Box(low=0, high=255, shape=(64, 64, 3))",
"vector": "Box(low=-1.2000000476837158, high=1.2000000476837158, shape=(64,))"

})

Action Space

Dict({
"vector": "Box(low=-1.0499999523162842, high=1.0499999523162842, shape=(64,))"

})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLNavigateExtremeVectorObf-v0") # A MineRLNavigateExtremeVectorObf-
→˓v0 env

obs = env.reset()
(continues on next page)

42 Chapter 1. What is MineRL

MineRL, Release 0.4.0

(continued from previous page)

done = False

while not done:
Take a no-op through the environment.
obs, rew, done, _ = env.step(env.action_space.noop())
Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLNavigateExtremeVectorObf-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):

Do something

1.12.5 MineRLNavigateExtremeDenseVectorObf-v0

In this task, the agent must move to a goal location denoted by a diamond block. This represents a basic primitive
used in many tasks throughout Minecraft. In addition to standard observations, the agent has access to a “compass”
observation, which points near the goal location, 64 meters from the start location. The goal has a small random
horizontal offset from the compass location and may be slightly below surface level. On the goal location is a unique
block, so the agent must find the final goal by searching based on local visual features.

The agent is given a sparse reward (+100 upon reaching the goal, at which point the episode terminates). This variant
of the environment is dense reward-shaped where the agent is given a reward every tick for how much closer (or
negative reward for farther) the agent gets to the target.
In this environment, the agent spawns in an extreme hills biome.

Observation Space

Dict({
"pov": "Box(low=0, high=255, shape=(64, 64, 3))",
"vector": "Box(low=-1.2000000476837158, high=1.2000000476837158, shape=(64,))"

})

1.12. MineRL Diamond Competition Research Track Environments 43

MineRL, Release 0.4.0

Action Space

Dict({
"vector": "Box(low=-1.0499999523162842, high=1.0499999523162842, shape=(64,))"

})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLNavigateExtremeDenseVectorObf-v0") # A␣
→˓MineRLNavigateExtremeDenseVectorObf-v0 env

obs = env.reset()
done = False

while not done:
Take a no-op through the environment.
obs, rew, done, _ = env.step(env.action_space.noop())
Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLNavigateExtremeDenseVectorObf-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):

Do something

1.12.6 MineRLObtainDiamondVectorObf-v0

In this environment the agent is required to obtain a diamond. The agent begins in a random starting location on a
random survival map without any items, matching the normal starting conditions for human players in Minecraft. The
agent is given access to a selected summary of its inventory and GUI free crafting, smelting, and inventory management
actions.

During an episode the agent is rewarded only once per item the first time it obtains that item in the requisite item
hierarchy to obtaining a diamond. The rewards for each item are given here:

<Item reward="1" type="log" />
<Item reward="2" type="planks" />
<Item reward="4" type="stick" />

(continues on next page)

44 Chapter 1. What is MineRL

MineRL, Release 0.4.0

(continued from previous page)

<Item reward="4" type="crafting_table" />
<Item reward="8" type="wooden_pickaxe" />
<Item reward="16" type="cobblestone" />
<Item reward="32" type="furnace" />
<Item reward="32" type="stone_pickaxe" />
<Item reward="64" type="iron_ore" />
<Item reward="128" type="iron_ingot" />
<Item reward="256" type="iron_pickaxe" />
<Item reward="1024" type="diamond" />

Observation Space

Dict({
"pov": "Box(low=0, high=255, shape=(64, 64, 3))",
"vector": "Box(low=-1.2000000476837158, high=1.2000000476837158, shape=(64,))"

})

Action Space

Dict({
"vector": "Box(low=-1.0499999523162842, high=1.0499999523162842, shape=(64,))"

})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLObtainDiamondVectorObf-v0") # A MineRLObtainDiamondVectorObf-v0␣
→˓env

obs = env.reset()
done = False

while not done:
Take a no-op through the environment.
obs, rew, done, _ = env.step(env.action_space.noop())
Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLObtainDiamondVectorObf-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):

Do something

1.12. MineRL Diamond Competition Research Track Environments 45

MineRL, Release 0.4.0

1.12.7 MineRLObtainDiamondDenseVectorObf-v0

In this environment the agent is required to obtain a diamond. The agent begins in a random starting location on a
random survival map without any items, matching the normal starting conditions for human players in Minecraft. The
agent is given access to a selected summary of its inventory and GUI free crafting, smelting, and inventory management
actions.

During an episode the agent is rewarded every time it obtains an item in the requisite item hierarchy to obtaining a
diamond. The rewards for each item are given here:

<Item reward="1" type="log" />
<Item reward="2" type="planks" />
<Item reward="4" type="stick" />
<Item reward="4" type="crafting_table" />
<Item reward="8" type="wooden_pickaxe" />
<Item reward="16" type="cobblestone" />
<Item reward="32" type="furnace" />
<Item reward="32" type="stone_pickaxe" />
<Item reward="64" type="iron_ore" />
<Item reward="128" type="iron_ingot" />
<Item reward="256" type="iron_pickaxe" />
<Item reward="1024" type="diamond" />

Observation Space

Dict({
"pov": "Box(low=0, high=255, shape=(64, 64, 3))",
"vector": "Box(low=-1.2000000476837158, high=1.2000000476837158, shape=(64,))"

})

Action Space

Dict({
"vector": "Box(low=-1.0499999523162842, high=1.0499999523162842, shape=(64,))"

})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLObtainDiamondDenseVectorObf-v0") # A␣
→˓MineRLObtainDiamondDenseVectorObf-v0 env

(continues on next page)

46 Chapter 1. What is MineRL

MineRL, Release 0.4.0

(continued from previous page)

obs = env.reset()
done = False

while not done:
Take a no-op through the environment.
obs, rew, done, _ = env.step(env.action_space.noop())
Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLObtainDiamondDenseVectorObf-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):

Do something

1.12.8 MineRLObtainIronPickaxeVectorObf-v0

In this environment the agent is required to obtain an iron pickaxe. The agent begins in a random starting location, on a
random survival map, without any items, matching the normal starting conditions for human players in Minecraft. The
agent is given access to a selected view of its inventory and GUI free crafting, smelting, and inventory management
actions.

During an episode the agent is rewarded only once per item the first time it obtains that item in the requisite item
hierarchy for obtaining an iron pickaxe. The reward for each item is given here:

<Item amount="1" reward="1" type="log" />
<Item amount="1" reward="2" type="planks" />
<Item amount="1" reward="4" type="stick" />
<Item amount="1" reward="4" type="crafting_table" />
<Item amount="1" reward="8" type="wooden_pickaxe" />
<Item amount="1" reward="16" type="cobblestone" />
<Item amount="1" reward="32" type="furnace" />
<Item amount="1" reward="32" type="stone_pickaxe" />
<Item amount="1" reward="64" type="iron_ore" />
<Item amount="1" reward="128" type="iron_ingot" />
<Item amount="1" reward="256" type="iron_pickaxe" />

1.12. MineRL Diamond Competition Research Track Environments 47

MineRL, Release 0.4.0

Observation Space

Dict({
"pov": "Box(low=0, high=255, shape=(64, 64, 3))",
"vector": "Box(low=-1.2000000476837158, high=1.2000000476837158, shape=(64,))"

})

Action Space

Dict({
"vector": "Box(low=-1.0499999523162842, high=1.0499999523162842, shape=(64,))"

})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLObtainIronPickaxeVectorObf-v0") # A␣
→˓MineRLObtainIronPickaxeVectorObf-v0 env

obs = env.reset()
done = False

while not done:
Take a no-op through the environment.
obs, rew, done, _ = env.step(env.action_space.noop())
Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLObtainIronPickaxeVectorObf-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):

Do something

1.12.9 MineRLObtainIronPickaxeDenseVectorObf-v0

In this environment the agent is required to obtain an iron pickaxe. The agent begins in a random starting location, on a
random survival map, without any items, matching the normal starting conditions for human players in Minecraft. The
agent is given access to a selected view of its inventory and GUI free crafting, smelting, and inventory management
actions.

48 Chapter 1. What is MineRL

MineRL, Release 0.4.0

During an episode the agent is rewarded every time it obtains an item in the requisite item hierarchy for obtaining
an iron pickaxe. The reward for each item is given here:

<Item amount="1" reward="1" type="log" />
<Item amount="1" reward="2" type="planks" />
<Item amount="1" reward="4" type="stick" />
<Item amount="1" reward="4" type="crafting_table" />
<Item amount="1" reward="8" type="wooden_pickaxe" />
<Item amount="1" reward="16" type="cobblestone" />
<Item amount="1" reward="32" type="furnace" />
<Item amount="1" reward="32" type="stone_pickaxe" />
<Item amount="1" reward="64" type="iron_ore" />
<Item amount="1" reward="128" type="iron_ingot" />
<Item amount="1" reward="256" type="iron_pickaxe" />

Observation Space

Dict({
"pov": "Box(low=0, high=255, shape=(64, 64, 3))",
"vector": "Box(low=-1.2000000476837158, high=1.2000000476837158, shape=(64,))"

})

Action Space

Dict({
"vector": "Box(low=-1.0499999523162842, high=1.0499999523162842, shape=(64,))"

})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLObtainIronPickaxeDenseVectorObf-v0") # A␣
→˓MineRLObtainIronPickaxeDenseVectorObf-v0 env

obs = env.reset()
done = False

while not done:
Take a no-op through the environment.
obs, rew, done, _ = env.step(env.action_space.noop())
Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLObtainIronPickaxeDenseVectorObf-v0")

(continues on next page)

1.12. MineRL Diamond Competition Research Track Environments 49

MineRL, Release 0.4.0

(continued from previous page)

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):

Do something

1.13 MineRL BASALT Competition Environments

1.13.1 MineRLBasaltFindCave-v0

After spawning in a plains biome, explore and find a cave. When inside a cave, throw a snowball to end episode.

Observation Space

Dict({
"equipped_items": {

"mainhand": {
"damage": "Box(low=-1, high=1562, shape=())",
"maxDamage": "Box(low=-1, high=1562, shape=())",
"type": "Enum(air,bucket,carrot,cobblestone,fence,fence_gate,none,

→˓other,snowball,stone_pickaxe,stone_shovel,water_bucket,wheat,wheat_seeds)"
}

},
"inventory": {

"bucket": "Box(low=0, high=2304, shape=())",
"carrot": "Box(low=0, high=2304, shape=())",
"cobblestone": "Box(low=0, high=2304, shape=())",
"fence": "Box(low=0, high=2304, shape=())",
"fence_gate": "Box(low=0, high=2304, shape=())",
"snowball": "Box(low=0, high=2304, shape=())",
"stone_pickaxe": "Box(low=0, high=2304, shape=())",
"stone_shovel": "Box(low=0, high=2304, shape=())",
"water_bucket": "Box(low=0, high=2304, shape=())",
"wheat": "Box(low=0, high=2304, shape=())",
"wheat_seeds": "Box(low=0, high=2304, shape=())"

},
"pov": "Box(low=0, high=255, shape=(64, 64, 3))"

})

50 Chapter 1. What is MineRL

MineRL, Release 0.4.0

Action Space

Dict({
"attack": "Discrete(2)",
"back": "Discrete(2)",
"camera": "Box(low=-180.0, high=180.0, shape=(2,))",
"equip": "Enum(air,bucket,carrot,cobblestone,fence,fence_gate,none,other,snowball,

→˓stone_pickaxe,stone_shovel,water_bucket,wheat,wheat_seeds)",
"forward": "Discrete(2)",
"jump": "Discrete(2)",
"left": "Discrete(2)",
"right": "Discrete(2)",
"sneak": "Discrete(2)",
"sprint": "Discrete(2)",
"use": "Discrete(2)"

})

Starting Inventory

Dict({
"snowball": 1

})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLBasaltFindCave-v0") # A MineRLBasaltFindCave-v0 env

obs = env.reset()
done = False

while not done:
Take a no-op through the environment.
obs, rew, done, _ = env.step(env.action_space.noop())
Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLBasaltFindCave-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):

Do something

1.13. MineRL BASALT Competition Environments 51

MineRL, Release 0.4.0

1.13.2 MineRLBasaltMakeWaterfall-v0

After spawning in an extreme hills biome, use your waterbucket to make an beautiful waterfall. Then take an aesthetic
“picture” of it by moving to a good location, positioning player’s camera to have a nice view of the waterfall, and
throwing a snowball. Throwing the snowball ends the episode.

Observation Space

Dict({
"equipped_items": {

"mainhand": {
"damage": "Box(low=-1, high=1562, shape=())",
"maxDamage": "Box(low=-1, high=1562, shape=())",
"type": "Enum(air,bucket,carrot,cobblestone,fence,fence_gate,none,

→˓other,snowball,stone_pickaxe,stone_shovel,water_bucket,wheat,wheat_seeds)"
}

},
"inventory": {

"bucket": "Box(low=0, high=2304, shape=())",
"carrot": "Box(low=0, high=2304, shape=())",
"cobblestone": "Box(low=0, high=2304, shape=())",
"fence": "Box(low=0, high=2304, shape=())",
"fence_gate": "Box(low=0, high=2304, shape=())",
"snowball": "Box(low=0, high=2304, shape=())",
"stone_pickaxe": "Box(low=0, high=2304, shape=())",
"stone_shovel": "Box(low=0, high=2304, shape=())",
"water_bucket": "Box(low=0, high=2304, shape=())",
"wheat": "Box(low=0, high=2304, shape=())",
"wheat_seeds": "Box(low=0, high=2304, shape=())"

},
"pov": "Box(low=0, high=255, shape=(64, 64, 3))"

})

Action Space

Dict({
"attack": "Discrete(2)",
"back": "Discrete(2)",
"camera": "Box(low=-180.0, high=180.0, shape=(2,))",
"equip": "Enum(air,bucket,carrot,cobblestone,fence,fence_gate,none,other,snowball,

→˓stone_pickaxe,stone_shovel,water_bucket,wheat,wheat_seeds)",
"forward": "Discrete(2)",
"jump": "Discrete(2)",
"left": "Discrete(2)",
"right": "Discrete(2)",
"sneak": "Discrete(2)",

52 Chapter 1. What is MineRL

MineRL, Release 0.4.0

"sprint": "Discrete(2)",
"use": "Discrete(2)"

})

Starting Inventory

Dict({
"cobblestone": 20,
"snowball": 1,
"stone_pickaxe": 1,
"stone_shovel": 1,
"water_bucket": 1

})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLBasaltMakeWaterfall-v0") # A MineRLBasaltMakeWaterfall-v0 env

obs = env.reset()
done = False

while not done:
Take a no-op through the environment.
obs, rew, done, _ = env.step(env.action_space.noop())
Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLBasaltMakeWaterfall-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):

Do something

1.13.3 MineRLBasaltCreateVillageAnimalPen-v0

After spawning in a plains village, surround two or more animals of the same type in a fenced area (a pen), constructed
near the house. You can’t have more than one type of animal in your enclosed area. Allowed animals are chickens,
sheep, cows, and pigs.

1.13. MineRL BASALT Competition Environments 53

MineRL, Release 0.4.0

Do not harm villagers or existing village structures in the process.

Throw a snowball to end the episode.

Observation Space

Dict({
"equipped_items": {

"mainhand": {
"damage": "Box(low=-1, high=1562, shape=())",
"maxDamage": "Box(low=-1, high=1562, shape=())",
"type": "Enum(air,bucket,carrot,cobblestone,fence,fence_gate,none,

→˓other,snowball,stone_pickaxe,stone_shovel,water_bucket,wheat,wheat_seeds)"
}

},
"inventory": {

"bucket": "Box(low=0, high=2304, shape=())",
"carrot": "Box(low=0, high=2304, shape=())",
"cobblestone": "Box(low=0, high=2304, shape=())",
"fence": "Box(low=0, high=2304, shape=())",
"fence_gate": "Box(low=0, high=2304, shape=())",
"snowball": "Box(low=0, high=2304, shape=())",
"stone_pickaxe": "Box(low=0, high=2304, shape=())",
"stone_shovel": "Box(low=0, high=2304, shape=())",
"water_bucket": "Box(low=0, high=2304, shape=())",
"wheat": "Box(low=0, high=2304, shape=())",
"wheat_seeds": "Box(low=0, high=2304, shape=())"

},
"pov": "Box(low=0, high=255, shape=(64, 64, 3))"

})

Action Space

Dict({
"attack": "Discrete(2)",
"back": "Discrete(2)",
"camera": "Box(low=-180.0, high=180.0, shape=(2,))",
"equip": "Enum(air,bucket,carrot,cobblestone,fence,fence_gate,none,other,snowball,

→˓stone_pickaxe,stone_shovel,water_bucket,wheat,wheat_seeds)",
"forward": "Discrete(2)",
"jump": "Discrete(2)",
"left": "Discrete(2)",
"right": "Discrete(2)",
"sneak": "Discrete(2)",
"sprint": "Discrete(2)",
"use": "Discrete(2)"

})

54 Chapter 1. What is MineRL

MineRL, Release 0.4.0

Starting Inventory

Dict({
"carrot": 1,
"fence": 64,
"fence_gate": 64,
"snowball": 1,
"wheat": 1,
"wheat_seeds": 1

})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLBasaltCreateVillageAnimalPen-v0") # A␣
→˓MineRLBasaltCreateVillageAnimalPen-v0 env

obs = env.reset()
done = False

while not done:
Take a no-op through the environment.
obs, rew, done, _ = env.step(env.action_space.noop())
Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLBasaltCreateVillageAnimalPen-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):

Do something

1.13.4 MineRLBasaltBuildVillageHouse-v0

Build a house in the style of the village without damaging the village. Give a tour of the house and then throw a snowball
to end the episode.

Note: In the observation and action spaces, the following (internal Minecraft) item IDs can be interpreted as follows:

• log#0 is oak logs.

1.13. MineRL BASALT Competition Environments 55

MineRL, Release 0.4.0

• log#1 is spruce logs.

• log2#0 is acacia logs.

• planks#0 is oak planks.

• planks#1 is spruce planks.

• planks#4 is acacia planks.

• sandstone#0 is cracked sandstone.

• sandstone#2 is smooth sandstone.

Tip: You can find detailed information on which materials are used in each biome-specific village (plains, savannah,
taiga, desert) here: https://minecraft.fandom.com/wiki/Village/Structure_(old)/Blueprints#Village_generation

Observation Space

Dict({
"equipped_items": {

"mainhand": {
"damage": "Box(low=-1, high=1562, shape=())",
"maxDamage": "Box(low=-1, high=1562, shape=())",
"type": "Enum(acacia_door,acacia_fence,cactus,cobblestone,dirt,fence,

→˓flower_pot,glass,ladder,log#0,log#1,log2#0,none,other,planks#0,planks#1,planks#4,red_
→˓flower,sand,sandstone#0,sandstone#2,sandstone_stairs,snowball,spruce_door,spruce_fence,
→˓stone_axe,stone_pickaxe,stone_stairs,torch,wooden_door,wooden_pressure_plate)"

}
},
"inventory": {

"acacia_door": "Box(low=0, high=2304, shape=())",
"acacia_fence": "Box(low=0, high=2304, shape=())",
"cactus": "Box(low=0, high=2304, shape=())",
"cobblestone": "Box(low=0, high=2304, shape=())",
"dirt": "Box(low=0, high=2304, shape=())",
"fence": "Box(low=0, high=2304, shape=())",
"flower_pot": "Box(low=0, high=2304, shape=())",
"glass": "Box(low=0, high=2304, shape=())",
"ladder": "Box(low=0, high=2304, shape=())",
"log#0": "Box(low=0, high=2304, shape=())",
"log#1": "Box(low=0, high=2304, shape=())",
"log2#0": "Box(low=0, high=2304, shape=())",
"planks#0": "Box(low=0, high=2304, shape=())",
"planks#1": "Box(low=0, high=2304, shape=())",
"planks#4": "Box(low=0, high=2304, shape=())",
"red_flower": "Box(low=0, high=2304, shape=())",
"sand": "Box(low=0, high=2304, shape=())",
"sandstone#0": "Box(low=0, high=2304, shape=())",
"sandstone#2": "Box(low=0, high=2304, shape=())",
"sandstone_stairs": "Box(low=0, high=2304, shape=())",
"snowball": "Box(low=0, high=2304, shape=())",
"spruce_door": "Box(low=0, high=2304, shape=())",
"spruce_fence": "Box(low=0, high=2304, shape=())",

56 Chapter 1. What is MineRL

https://minecraft.fandom.com/wiki/Village/Structure_(old)/Blueprints#Village_generation

MineRL, Release 0.4.0

"stone_axe": "Box(low=0, high=2304, shape=())",
"stone_pickaxe": "Box(low=0, high=2304, shape=())",
"stone_stairs": "Box(low=0, high=2304, shape=())",
"torch": "Box(low=0, high=2304, shape=())",
"wooden_door": "Box(low=0, high=2304, shape=())",
"wooden_pressure_plate": "Box(low=0, high=2304, shape=())"

},
"pov": "Box(low=0, high=255, shape=(64, 64, 3))"

})

Action Space

Dict({
"attack": "Discrete(2)",
"back": "Discrete(2)",
"camera": "Box(low=-180.0, high=180.0, shape=(2,))",
"equip": "Enum(acacia_door,acacia_fence,cactus,cobblestone,dirt,fence,flower_pot,

→˓glass,ladder,log#0,log#1,log2#0,none,other,planks#0,planks#1,planks#4,red_flower,sand,
→˓sandstone#0,sandstone#2,sandstone_stairs,snowball,spruce_door,spruce_fence,stone_axe,
→˓stone_pickaxe,stone_stairs,torch,wooden_door,wooden_pressure_plate)",

"forward": "Discrete(2)",
"jump": "Discrete(2)",
"left": "Discrete(2)",
"right": "Discrete(2)",
"sneak": "Discrete(2)",
"sprint": "Discrete(2)",
"use": "Discrete(2)"

})

Starting Inventory

Dict({
"acacia_door": 64,
"acacia_fence": 64,
"cactus": 3,
"cobblestone": 64,
"dirt": 64,
"fence": 64,
"flower_pot": 3,
"glass": 64,
"ladder": 64,
"log#0": 64,
"log#1": 64,
"log2#0": 64,
"planks#0": 64,
"planks#1": 64,
"planks#4": 64,
"red_flower": 3,
"sand": 64,
"sandstone#0": 64,
"sandstone#2": 64,
"sandstone_stairs": 64,
"snowball": 1,

1.13. MineRL BASALT Competition Environments 57

MineRL, Release 0.4.0

"spruce_door": 64,
"spruce_fence": 64,
"stone_axe": 1,
"stone_pickaxe": 1,
"stone_stairs": 64,
"torch": 64,
"wooden_door": 64,
"wooden_pressure_plate": 64

})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLBasaltBuildVillageHouse-v0") # A MineRLBasaltBuildVillageHouse-v0␣
→˓env

obs = env.reset()
done = False

while not done:
Take a no-op through the environment.
obs, rew, done, _ = env.step(env.action_space.noop())
Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLBasaltBuildVillageHouse-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):

Do something

1.14 Performance tips

1.14.1 Slowdown in obfuscated environments

Obfuscated environments, like MineRLObtainDiamondVectorObf-v0make extensive use of np.dot function, which
by default is parallelized over multiple threads. Since the vectors/matrices are small, the overhead from this outweights
benefits, and the environment appears much slower than it really is.

To speed up obfuscated environments, try setting environment variable OMP_NUM_THREADS=1 to restrict Numpy to
only use one thread.

58 Chapter 1. What is MineRL

MineRL, Release 0.4.0

1.14.2 Faster alternative to xvfb

Running MineRL on xvfb will slow it down by 2-3x as the rendering is done on CPU, not on the GPU. A potential
alternative is to use a combination of VirtualGL and virtual displays from nvidia tools.

Note that this may interfere with your display/driver setup, and may not work on cloud VMs (nvidia-xconfig is not
available).

Following commands outline the procedure. You may need to adapt it to suit your needs. After these commands, run
export DISPLAY=:0 and you should be ready to run MineRL. The Minecraft window will be rendered in a virtual
display.

All credits go to Tencent researchers who kindly shared this piece of information!

sudo apt install lightdm libglu1-mesa mesa-utils xvfb xinit xserver-xorg-video-dummy

sudo nvidia-xconfig -a --allow-empty-initial-configuration --virtual=1920x1200 --busid␣
→˓PCI:0:8:0
cd /tmp
wget https://nchc.dl.sourceforge.net/project/virtualgl/2.6.3/virtualgl_2.6.3_amd64.deb
sudo dpkg -i virtualgl_2.6.3_amd64.deb

sudo service lightdm stop
sudo vglserver_config
sudo service lightdm start

1.15 Links to papers and projects

Here you can find useful links to the presentations, code and papers of the finalists in previous MineRL competitions,
as well as other publications and projects that use MineRL.

To see all papers that cite MineRL, check Google Scholar. You can also create alerts there to get notified whenever a
new citation appears.

If you want to add your paper/project here, do not hesitate to create a pull request in the main repository!

1.15.1 Presentations

• MineRL 2019 - Finalists presentations at NeurIPS 2019

• MineRL 2019 - 1st place winners presentation, longer one (slides in English, talk in Russian)

• MineRL 2020 - Round 1 finalists presentations at NeurIPS 2020

• MineRL 2020 - Round 2 finalists presentations at Microsoft AI and Gaming Research Summit 2021

1.15. Links to papers and projects 59

https://scholar.google.com/scholar?cites=13696808614504218715&as_sdt=2005&sciodt=0,5&hl=en
https://github.com/minerllabs/minerl
https://slideslive.at/38922880/the-minerl-competition
https://www.youtube.com/watch?v=7J2HMUimj1A
https://crossminds.ai/video/introduction-and-results-of-the-2020-minerl-competition-606fdfb5f43a7f2f827bfc23
https://www.youtube.com/watch?v=rVvfJ1u5zDU

MineRL, Release 0.4.0

1.15.2 MineRL papers

• MineRL: A Large-Scale Dataset of Minecraft Demonstrations

• The MineRL 2019 Competition on Sample Efficient Reinforcement Learning using Human Priors

• Retrospective Analysis of the 2019 MineRL Competition on Sample Efficient Reinforcement Learning

• The MineRL 2020 Competition on Sample Efficient Reinforcement Learning using Human Priors

• Towards robust and domain agnostic reinforcement learning competitions: MineRL 2020

1.15.3 2019 competitor code/papers

• 1st place: paper.

• 2nd place: paper, code.

• 3rd place: paper, code.

• 4th place: code.

• 5th place: paper, code.

1.15.4 2020 competitor code/papers

• 1st place: paper.

• 2nd place: code.

• 3rd place: code.

1.15.5 Other papers that use the MineRL environment

• PiCoEDL: Discovery and Learning of Minecraft Navigation Goals from Pixels and Coordinates (CVPR Embod-
ied AI Workshop, 2021)

• Universal Value Iteration Networks: When Spatially-Invariant Is Not Universal (AAAI, 2020)

• Multi-task curriculum learning in a complex, visual, hard-exploration domain: Minecraft

• Follow up paper from the #1 team in 2019 (obtains diamond): paper, code.

• Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution (obtains diamond): paper, code.

1.15.6 Other

• Data analysis for vector obfuscation/kmeans

• Malmo and MineRL tutorial

60 Chapter 1. What is MineRL

https://arxiv.org/abs/1907.13440
https://arxiv.org/abs/1904.10079
https://arxiv.org/abs/2003.05012
https://arxiv.org/abs/2101.11071
https://arxiv.org/abs/2106.03748
https://arxiv.org/abs/1912.08664
https://arxiv.org/abs/2007.02701
https://github.com/amiranas/minerl_imitation_learning
https://arxiv.org/abs/2003.06066
https://github.com/metataro/minerl_agent
https://github.com/kaixin96/MineRL_submission
https://arxiv.org/abs/2005.03374
https://github.com/Miffyli/minecraft-bc
https://arxiv.org/abs/2111.08857
https://github.com/MichalOp/MineRL2020
https://github.com/Miffyli/minecraft-bc-2020
https://imatge.upc.edu/web/sites/default/files/pub/cNieto.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/6157
https://arxiv.org/abs/2106.14876
https://arxiv.org/abs/2006.09939
https://github.com/cog-isa/forger
https://arxiv.org/abs/2009.14108
https://github.com/ml-jku/align-rudder
https://github.com/GJuceviciute/MineRL-2020
https://tsmatz.wordpress.com/2020/07/09/minerl-and-malmo-reinforcement-learning-in-minecraft/

MineRL, Release 0.4.0

1.16 Windows FAQ

This note serves as a collection of fixes for errors which may occur on the Windows platform.

1.16.1 The The system cannot find the path specified error (installing)

If during installation you get errors regarding missing files or unspecified paths, followed by a long path string, you
might be limited by the MAX_PATH setting on windows. Try removing this limitation with these instructions.

1.16.2 The freeze_support error (multiprocessing)

RuntimeError:
An attempt has been made to start a new process before the
current process has finished its bootstrapping phase.

This probably means that you are not using fork to start your
child processes and you have forgotten to use the proper idiom
in the main module:

if __name__ == '__main__':
freeze_support()
...

The "freeze_support()" line can be omitted if the program
is not going to be frozen to produce an executable.

The implementation of multiprocessing is different on Windows, which uses spawn instead of fork. So we have to
wrap the code with an if-clause to protect the code from executing multiple times. Refactor your code into the following
structure.

import minerl
import gym

def main()
do your main minerl code
env = gym.make('MineRLTreechop-v0')

if __name__ == '__main__':
main()

1.17 minerl.env

The minerl.env package provides an optimized python software layer over MineRLEnv, a fork of the popular
Minecraft simulator Malmo which enables synchronous, stable, and fast samples from the Minecraft environment.

1.16. Windows FAQ 61

https://lifehacker.com/windows-10-allows-file-names-longer-than-260-characters-1785201032

MineRL, Release 0.4.0

1.17.1 MineRLEnv

class minerl.env._singleagent._SingleAgentEnv(*args, **kwargs)
Bases: _MultiAgentEnv

The single agent version of the MineRLEnv.

THIS CLASS SHOULD NOT BE INSTANTIATED DIRECTLY USE ENV SPEC.

render(mode='human')
Renders the environment.

The set of supported modes varies per environment. (And some environments do not support rendering at
all.) By convention, if mode is:

• human: render to the current display or terminal and return nothing. Usually for human consumption.

• rgb_array: Return an numpy.ndarray with shape (x, y, 3), representing RGB values for an x-by-y pixel
image, suitable for turning into a video.

• ansi: Return a string (str) or StringIO.StringIO containing a terminal-style text representation. The
text can include newlines and ANSI escape sequences (e.g. for colors).

Note:
Make sure that your class’s metadata ‘render.modes’ key includes

the list of supported modes. It’s recommended to call super() in implementations to use the function-
ality of this method.

Parameters
mode (str) – the mode to render with

Example:

class MyEnv(Env):
metadata = {‘render.modes’: [‘human’, ‘rgb_array’]}

def render(self, mode=’human’):
if mode == ‘rgb_array’:

return np.array(. . .) # return RGB frame suitable for video

elif mode == ‘human’:
. . . # pop up a window and render

else:
super(MyEnv, self).render(mode=mode) # just raise an exception

reset()→ Dict[str, Any]
Reset the environment.

Sets-up the Env from its specification (called everytime the env is reset.)

Returns
The first observation of the environment.

step(single_agent_action: Dict[str, Any])→ Tuple[Dict[str, Any], float, bool, Dict[str, Any]]
Run one timestep of the environment’s dynamics. When end of episode is reached, you are responsible for
calling reset() to reset this environment’s state.

62 Chapter 1. What is MineRL

MineRL, Release 0.4.0

Accepts an action and returns a tuple (observation, reward, done, info).

Parameters
action (object) – an action provided by the agent

Returns
agent’s observation of the current environment reward (float) : amount of reward returned
after previous action done (bool): whether the episode has ended, in which case further step()
calls will return undefined results info (dict): contains auxiliary diagnostic information (help-
ful for debugging, and sometimes learning)

Return type
observation (object)

1.17.2 InstanceManager

class minerl.env.malmo.CustomAsyncRemoteMethod(proxy, name, max_retries)
Bases: _AsyncRemoteMethod

class minerl.env.malmo.InstanceManager

Bases: object

The Minecraft instance manager library. The instance manager can be used to allocate and safely terminate
existing Malmo instances for training agents.

Note: This object never needs to be explicitly invoked by the user of the MineRL library as the creation of one
of the several MineRL environments will automatically query the InstanceManager to create a new instance.

Note: In future versions of MineRL the instance manager will become its own daemon process which provides
instance allocation capability using remote procedure calls.

DEFAULT_IP = 'localhost'

KEEP_ALIVE_PYRO_FREQUENCY = 5

MAXINSTANCES = None

MINECRAFT_DIR = '/home/docs/checkouts/readthedocs.org/user_builds/minerl/envs/v0.4.
4/lib/python3.7/site-packages/minerl/env/../Malmo/Minecraft'

REMOTE = False

SCHEMAS_DIR = '/home/docs/checkouts/readthedocs.org/user_builds/minerl/envs/v0.4.4/
lib/python3.7/site-packages/minerl/env/../Malmo/Schemas'

STATUS_DIR = '/home/docs/checkouts/readthedocs.org/user_builds/minerl/envs/v0.4.4/
lib/python3.7/site-packages/sphinx/performance'

X11_DIR = '/tmp/.X11-unix'

classmethod add_existing_instance(port)

classmethod add_keep_alive(_pid, _callback)

classmethod allocate_pool(num)

classmethod configure_malmo_base_port(malmo_base_port)
Configure the lowest or base port for Malmo

1.17. minerl.env 63

MineRL, Release 0.4.0

classmethod get_instance(pid, instance_id=None)
Gets an instance from the instance manager. This method is a context manager and therefore when the
context is entered the method yields a InstanceManager.Instance object which contains the allocated port
and host for the given instance that was created.

Yields
The allocated InstanceManager.Instance object.

Raises
• RuntimeError – No available instances or the maximum number of allocated instances

reached.

• RuntimeError – No available instances and automatic allocation of instances is off.

headless = False

classmethod is_remote()

managed = True

ninstances = 0

classmethod set_valid_jdwp_port_for_instance(instance)→ None
Find a valid port for JDWP (Java Debug Wire Protocol), so that the instance can be debugged with an
attached debugger. The port is set in the instance, so that other instances can check whether the port is
reserved. :param instance: Instance to find and port for, and where we will set the jdwp port.

classmethod shutdown()

class minerl.env.malmo.MinecraftInstance(port=None, existing=False, status_dir=None, seed=None,
instance_id=None)

Bases: object

A subprocess wrapper which maintains a reference to a minecraft subprocess and also allows for stable closing
and launching of such subprocesses across different platforms.

The Minecraft instance class works by launching two subprocesses: the Malmo subprocess, and a watcher sub-
process with access to the process IDs of both the parent process and the Malmo subprocess. If the parent process
dies, it will kill the subprocess, and then itself.

This scheme has a single failure point of the process dying before the watcher process is launched.

MAX_PIPE_LENGTH = 500

property actor_name

property client_socket

client_socket_close()

client_socket_recv_message()

client_socket_send_message(msg)

client_socket_shutdown(param)

close()

Closes the object.

create_multiagent_instance_socket(socktime)

64 Chapter 1. What is MineRL

MineRL, Release 0.4.0

get_output()

property had_to_clean

has_client_socket()

property host

property jdwp_port

JDWP (Java Debug Wire Protocol) port, if any, so the instance can be debugged with an attached debugger.

kill()

Kills the process (if it has been launched.)

launch(daemonize=False, replaceable=True)

property port

release_lock()

property status_dir

class minerl.env.malmo.SeedType(value)
Bases: IntEnum

The seed type for an instance manager.

Values:
0 - NONE: No seeding whatsoever. 1 - CONSTANT: All envrionments have the same seed (the one specified

to the instance manager) (or alist of seeds , separated)

2 - GENERATED: All environments have different seeds generated from a single
random generator with the seed specified to the InstanceManager.

3 - SPECIFIED: Each instance is given a list of seeds. Specify this like
1,2,3,4;848,432,643;888,888,888 Each instance’s seed list is separated by ; and each seed is separated
by ,

CONSTANT = 1

GENERATED = 2

NONE = 0

SPECIFIED = 3

classmethod get_index(type)

minerl.env.malmo.launch_instance_manager()

Defines the entry point for the remote procedure call server.

minerl.env.malmo.launch_queue_logger_thread(output_producer, should_end)

1.17. minerl.env 65

MineRL, Release 0.4.0

1.18 minerl.data

The minerl.data package provides a unified interface for sampling data from the MineRL-v0 Dataset. Data is ac-
cessed by making a dataset from one of the minerl environments and iterating over it using one of the iterators provided
by the minerl.data.DataPipeline

The following is a description of the various methods included within the package as well as some basic usage examples.
To see more detailed descriptions and tutorials on how to use the data API, please take a look at our numerous getting
started manuals.

1.18.1 MineRLv0

class minerl.data.DataPipeline(data_directory: <module 'posixpath' from
'/home/docs/checkouts/readthedocs.org/user_builds/minerl/envs/v0.4.4/lib/python3.7/posixpath.py'>,
environment: str, num_workers: int, worker_batch_size: int,
min_size_to_dequeue: int, random_seed=42)

Bases: object

Creates a data pipeline object used to itterate through the MineRL-v0 dataset

property action_space

action space of current MineRL environment

Type
Returns

batch_iter(batch_size: int, seq_len: int, num_epochs: int = - 1, preload_buffer_size: int = 2, seed:
Optional[int] = None)

Returns batches of sequences length SEQ_LEN of the data of size BATCH_SIZE. The iterator produces
batches sequentially. If an element of a batch reaches the end of its episode, it will be appended with a new
episode.

If you wish to obtain metadata of the episodes, consider using load_data instead.

Parameters
• batch_size (int) – The batch size.

• seq_len (int) – The size of sequences to produce.

• num_epochs (int, optional) – The number of epochs to iterate over the data. Defaults
to -1.

• preload_buffer_size (int, optional) – Increase to IMPROVE PERFORMANCE.
The data iterator uses a queue to prevent blocking, the queue size is the number of trajec-
tories to load into the buffer. Adjust based on memory constraints. Defaults to 32.

• seed (int, optional) – [int]. NOT IMPLEMENTED Defaults to None.

Returns
A generator that yields (sarsd) batches

Return type
Generator

get_trajectory_names()

Gets all the trajectory names

66 Chapter 1. What is MineRL

http://minerl.io/docs/tutorials/first_agent.html
http://minerl.io/docs/tutorials/first_agent.html
http://minerl.io/docs/tutorials/first_agent.html

MineRL, Release 0.4.0

Returns
[description]

Return type
A list of experiment names

load_data(stream_name: str, skip_interval=0, include_metadata=False, include_monitor_data=False)
Iterates over an individual trajectory named stream_name.

Parameters
• stream_name (str) – The stream name desired to be iterated through.

• skip_interval (int, optional) – How many sices should be skipped.. Defaults to 0.

• include_metadata (bool, optional) – Whether or not meta data about the loaded
trajectory should be included.. Defaults to False.

• include_monitor_data (bool, optional) – Whether to include all of the monitor data
from the environment. Defaults to False.

Yields
A tuple of (state, player_action, reward_from_action, next_state, is_next_state_terminal).
These are tuples are yielded in order of the episode.

property observation_space

observation space of current MineRL environment

Type
Returns

static read_frame(cap)

sarsd_iter(num_epochs=- 1, max_sequence_len=32, queue_size=None, seed=None,
include_metadata=False)

Returns a generator for iterating through (state, action, reward, next_state, is_terminal) tuples in the dataset.
Loads num_workers files at once as defined in minerl.data.make() and return up to max_sequence_len
consecutive samples wrapped in a dict observation space

Parameters
• num_epochs (int, optional) – number of epochs to iterate over or -1 to loop forever.

Defaults to -1

• max_sequence_len (int, optional) – maximum number of consecutive samples -
may be less. Defaults to 32

• seed (int, optional) – seed for random directory walk - note, specifying seed as well
as a finite num_epochs will cause the ordering of examples to be the same after every call
to seq_iter

• queue_size (int, optional) – maximum number of elements to buffer at a time,
each worker may hold an additional item while waiting to enqueue. Defaults to
16*self.number_of_workers or 2* self.number_of_workers if max_sequence_len == -1

• include_metadata (bool, optional) – adds an additional member to the tuple con-
taining metadata about the stream the data was loaded from. Defaults to False

Yields
A tuple of (state, player_action, reward_from_action, next_state, is_next_state_terminal,
(metadata)). Each element is in the format of the environment action/state/reward space and
contains as many samples are requested.

1.18. minerl.data 67

MineRL, Release 0.4.0

seq_iter(num_epochs=- 1, max_sequence_len=32, queue_size=None, seed=None,
include_metadata=False)

DEPRECATED METHOD FOR SAMPLING DATA FROM THE MINERL DATASET.

This function is now DataPipeline.batch_iter()

property spec: EnvSpec

minerl.data.download(directory: Optional[str] = None, environment: Optional[str] = None, competition:
Optional[str] = None, resolution: str = 'low', texture_pack: int = 0,
update_environment_variables: bool = True, disable_cache: bool = False)→ None

Low-level interface for downloading MineRL dataset.

Using the python -m minerl.data.download CLI script is preferred because it performs more input validation and
hides internal-use arguments.

Run this command with environment=None and competition=None to download a minimal dataset with 2 demon-
strations from each environment. Provide the environment or competition arguments to download a full dataset
for a particular environment or competition.

Parameters
• directory – Destination folder for downloading MineRL datasets. If None, then use the

MINERL_DATA_ROOT environment variable, or error if this environment variable is not
set.

• environment – The name of a MineRL environment or None. If this argument is the name
of a MineRL environment and competition is None, then this function downloads the full
dataset for the specifies MineRL environment.

If both environment=None and competition=None, then this function downloads a minimal
dataset.

• competition – The name of a MineRL competition (“diamond” or “basalt”) or None. If this
argument is the name of a MineRL environment and competition is None, then this function
downloads the full dataset for the specified MineRL competition.

If both environment=None and competition=None, then this function downloads a minimal
dataset.

• resolution – For internal use only. One of [‘low’, ‘high’] corresponding to video resolu-
tions of [64x64,1024x1024] respectively (note: high resolution is not currently supported).

• texture_pack – For internal use only. 0: default Minecraft texture pack, 1: flat semi-
realistic texture pack.

• update_environment_variables – For internal use only. If True, then export of MIN-
ERL_DATA_ROOT environment variable (note: for some os this is only for the current
shell).

• disable_cache – If False (default), then the tar download and other temporary download
files are saved inside directory.

If disable_cache is False on a future call to this function and temporary download files are
detected, then the download is resumed from previous download progress. If disable_cache is
False on a future call to this function and the completed tar file is detected, then the download
is skipped entirely and we immediately extract the tar to directory.

minerl.data.make(environment=None, data_dir=None, num_workers=4, worker_batch_size=32,
minimum_size_to_dequeue=32, force_download=False)

Initalizes the data loader with the chosen environment

68 Chapter 1. What is MineRL

MineRL, Release 0.4.0

Parameters
• environment (string) – desired MineRL environment

• data_dir (string, optional) – specify alternative dataset location. Defaults to None.

• num_workers (int, optional) – number of files to load at once. Defaults to 4.

• force_download (bool, optional) – specifies whether or not the data should be down-
loaded if missing. Defaults to False.

Returns
initalized data pipeline

Return type
DataPipeline

1.19 minerl.herobraine

1.19.1 Handlers

In addition to the default environments MineRL provides, you can use a variety of custom handlers to build your own.
See the Custom Environment Tutorial to understand how to use these handlers. The following is documentation on all
handlers which MineRL currently supports.

1.19.2 Agent Handlers

Agent Handlers allow you to modify various properties of the agent (e.g. items in inventory, starting health, what gives
the agent reward).

Agent Start Handlers

Agent start handlers define agent start conditions such as inventory items and health.

When used to create a Gym environment, they should be passed to create_agent_start

class minerl.herobraine.hero.handlers.agent.start.AgentStartBreakSpeedMultiplier(multiplier=1.0)
Bases: Handler

Sets the break speed multiplier (how fast the agent can break blocks)

See here for more information: https://minecraft.fandom.com/el/wiki/Breaking

Example usage:

AgentStartBreakSpeedMultiplier(2.0)

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

1.19. minerl.herobraine 69

https://minerl.readthedocs.io/en/latest/tutorials/custom_environments.html
https://minecraft.fandom.com/el/wiki/Breaking

MineRL, Release 0.4.0

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

class minerl.herobraine.hero.handlers.agent.start.AgentStartNear(anchor_name='MineRLAgent0',
min_distance=2,
max_distance=10,
max_vert_distance=3)

Bases: Handler

Starts agent near another agent

Example usage:

AgentStartNear("MineRLAgent0", min_distance=2, max_distance=10, max_vert_distance=3)

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

class minerl.herobraine.hero.handlers.agent.start.AgentStartPlacement(x, y, z, yaw, pitch=0.0)
Bases: Handler

Sets for the agent start location

Example usage:

AgentStartPlacement(x=5, y=70, z=4, yaw=0, pitch=0)

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

class minerl.herobraine.hero.handlers.agent.start.InventoryAgentStart(inventory: Dict[int,
Dict[str, Union[str,
int]]])

Bases: Handler

Sets the start inventory of the agent by slot id.

Example usage:

70 Chapter 1. What is MineRL

MineRL, Release 0.4.0

InventoryAgentStart({
0: {'type':'dirt', 'quantity':10},
metadata specifies the type of planks (e.g. oak, spruce)
1: {'type':'planks', 'metadata': 1, 'quantity':5},
5: {'type':'log', 'quantity':1},
6: {'type':'log', 'quantity':2},
32: {'type':'iron_ore', 'quantity':4

})

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

class minerl.herobraine.hero.handlers.agent.start.RandomInventoryAgentStart(inventory:
Dict[str,
Union[str, int]],
use_hotbar: bool
= False)

Bases: InventoryAgentStart

Sets the agent start inventory by randomly distributing items throughout its inventory slots. Note: This has no
effect on inventory observation handlers.

Example usage:

RandomInventoryAgentStart(
{'dirt': 10, 'planks': 5}

)

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

class minerl.herobraine.hero.handlers.agent.start.RandomizedStartDecorator

Bases: Handler

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

1.19. minerl.herobraine 71

MineRL, Release 0.4.0

class minerl.herobraine.hero.handlers.agent.start.SimpleInventoryAgentStart(inventory:
List[Dict[str,
Union[str,
int]]])

Bases: InventoryAgentStart

Sets the start inventory of the agent sequentially.

Example usage:

SimpleInventoryAgentStart([
{'type':'dirt', 'quantity':10},
{'type':'planks', 'quantity':5},
{'type':'log', 'quantity':1},
{'type':'iron_ore', 'quantity':4}

])

class minerl.herobraine.hero.handlers.agent.start.StartingFoodAgentStart(food: int = 20,
food_saturation:
Optional[float] =
None)

Bases: Handler

Sets the starting food and/or food saturation of the agent.

Example usage:

StartingFoodAgentStart(food=2.5, food_saturation=1)

:param food: The amount of food the agent starts out with :param food_saturation: Determines how fast the
hunger level depletes, defaults to 5

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

class minerl.herobraine.hero.handlers.agent.start.StartingHealthAgentStart(max_health: float
= 20, health:
Optional[float] =
None)

Bases: Handler

Sets the starting health of the agent

Example usage:

StartingHealthAgentStart(max_health=20, health=2.5)

max_health sets the maximum amount of health the agent can have health sets amount of health the agent
starts with (max_health if not specified)

72 Chapter 1. What is MineRL

MineRL, Release 0.4.0

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

Agent Quit Handlers

These handlers cause the episode to terminate based on certain agent conditions.

When used to create a Gym environment, they should be passed to create_agent_handlers

class minerl.herobraine.hero.handlers.agent.quit.AgentQuitFromCraftingItem(items:
List[Dict[str,
Union[str, int]]])

Bases: Handler

Terminates episode when agent crafts one of the items in items

Example usage:

AgentQuitFromCraftingItem([
dict(type="iron_axe", amount=1), dict(type="diamond_block", amount=5)

])

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

class minerl.herobraine.hero.handlers.agent.quit.AgentQuitFromPossessingItem(items:
List[Dict[str,
Union[str,
int]]])

Bases: Handler

Terminates episode when agent obtains one of the items in items

Example usage:

AgentQuitFromPossessingItem([
dict(type="golden_apple", amount=3), dict(type="diamond", amount=1)

])

1.19. minerl.herobraine 73

MineRL, Release 0.4.0

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

class minerl.herobraine.hero.handlers.agent.quit.AgentQuitFromTouchingBlockType(blocks:
List[str])

Bases: Handler

Terminates episode when agent touches one of the blocks in blocks

Example usage:

AgentQuitFromTouchingBlockType([
"gold_block", "oak_log"

])

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

Reward Handlers

These handlers modify what things the agent gets rewarded for.

When used to create a Gym environment, they should be passed to create_rewardables

class minerl.herobraine.hero.handlers.agent.reward.ConstantReward(constant)
Bases: RewardHandler

A constant reward handler

from_hero(obs_dict)
By default hero will include the reward in the observation. This is just a pass through for convenience.
:param obs_dict: :return: The reward

from_universal(x)
Converts a universal representation of the handler (e.g. universal action/observation)

class minerl.herobraine.hero.handlers.agent.reward.RewardForCollectingItems(item_rewards:
List[Dict[str,
Union[str,
int]]])

74 Chapter 1. What is MineRL

MineRL, Release 0.4.0

Bases: _RewardForPosessingItemBase

The standard malmo reward for collecting item.

Example usage:

RewardForCollectingItems([
dict(type="log", amount=1, reward=1.0),

])

from_universal(x)
Converts a universal representation of the handler (e.g. universal action/observation)

class minerl.herobraine.hero.handlers.agent.reward.RewardForCollectingItemsOnce(item_rewards:
List[Dict[str,
Union[str,
int]]])

Bases: _RewardForPosessingItemBase

The standard malmo reward for collecting item once.

Example usage:

RewardForCollectingItemsOnce([
dict(type="log", amount=1, reward=1),

])

from_universal(x)
Converts a universal representation of the handler (e.g. universal action/observation)

class minerl.herobraine.hero.handlers.agent.reward.RewardForDistanceTraveledToCompassTarget(reward_per_block:
int,
den-
sity:
str
=
'PER_TICK')

Bases: RewardHandler

Creates a reward which is awarded when the player reaches a certain distance from a target.

Example usage:

RewardForDistanceTraveledToCompassTarget(2)

from_universal(obs)
Converts a universal representation of the handler (e.g. universal action/observation)

reset()

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

1.19. minerl.herobraine 75

MineRL, Release 0.4.0

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

class minerl.herobraine.hero.handlers.agent.reward.RewardForMissionEnd(reward: int,
description: str =
'out_of_time')

Bases: RewardHandler

Creates a reward which is awarded when a mission ends.

Example usage:

awards a reward of 5 when mission ends
RewardForMissionEnd(reward=5.0, description="mission termination")

from_universal(obs)
Converts a universal representation of the handler (e.g. universal action/observation)

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

class minerl.herobraine.hero.handlers.agent.reward.RewardForTouchingBlockType(blocks:
List[Dict[str,
Union[str, int,
float]]])

Bases: RewardHandler

Creates a reward which is awarded when the player touches a block.

Example usage:

RewardForTouchingBlockType([
{'type':'diamond_block', 'behaviour':'onceOnly', 'reward':'10'},

])

from_universal(obs)
Converts a universal representation of the handler (e.g. universal action/observation)

reset()

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

76 Chapter 1. What is MineRL

MineRL, Release 0.4.0

class minerl.herobraine.hero.handlers.agent.reward.RewardHandler

Bases: TranslationHandler

Specifies a reward handler for a task. These need to be attached to tasks with reinforcement learning objectives.
All rewards need inherit from this reward handler #Todo: Figure out how this interplays with Hero, as rewards
are summed.

from_hero(obs_dict)
By default hero will include the reward in the observation. This is just a pass through for convenience.
:param obs_dict: :return: The reward

Action Handlers

Action handlers define what actions agents are allowed to take.

When used to create a gym, you should override create_actionables and pass the action handlers to this function. See
the Custom Environment Tutorial for more.

Camera

class minerl.herobraine.hero.handlers.agent.actions.camera.CameraAction

Bases: Action

Uses <delta_pitch, delta_yaw> vector in degrees to rotate the camera. pitch range [-180, 180], yaw range [-180,
180]

from_universal(x)
Converts a universal representation of the handler (e.g. universal action/observation)

to_string()

The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

Craft

class minerl.herobraine.hero.handlers.agent.actions.craft.CraftAction(items: list,
_other=typing.Union[str,
NoneType], _de-
fault=typing.Union[str,
NoneType])

Bases: ItemListAction

An action handler for crafting items

Note when used alongside Craft Item Nearby, block lists must be disjoint or from_universal will fire multiple
times

1.19. minerl.herobraine 77

https://minerl.readthedocs.io/en/latest/tutorials/custom_environments.html

MineRL, Release 0.4.0

from_universal(obs)
Converts a universal representation of the handler (e.g. universal action/observation)

to_string()

The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

class minerl.herobraine.hero.handlers.agent.actions.craft.CraftNearbyAction(items: list,
_other=typing.Union[str,
NoneType], _de-
fault=typing.Union[str,
NoneType])

Bases: CraftAction

An action handler for crafting items when agent is in view of a crafting table

Note when used along side Craft Item, item lists must be disjoint or from_universal will fire multiple times

to_string()

The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

Equip

class minerl.herobraine.hero.handlers.agent.actions.equip.EquipAction(items: list,
_default='none',
_other='other')

Bases: ItemWithMetadataListAction

An action handler for observing a list of equipped items

from_universal(obs)→ str
Converts a universal representation of the handler (e.g. universal action/observation)

logger = <Logger minerl.herobraine.hero.handlers.agent.actions.equip.EquipAction
(WARNING)>

reset()

78 Chapter 1. What is MineRL

MineRL, Release 0.4.0

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

Keyboard

class minerl.herobraine.hero.handlers.agent.actions.keyboard.KeybasedCommandAction(command,
*keys)

Bases: Action

A command action which is generated from human keypresses in anvil. Examples of such actions are movement
actions, etc.

This is not to be confused with keyboard actions, whereby both anvil and malmo simulate and act on direct key
codes.

Combinations of KeybasedCommandActions yield actions like:

{
“move” : 1,
“jump”: 1

}

where move and jump are the commands, which correspond to keys like ‘W’, ‘SPACE’, etc.

This is as opposed to keyboard actions (see the following class definition in keyboard.py) which yield actions
like:

{
"keyboard" : {

"W" : 1,
"A": 1,
"S": 0,
"E": 1,
...

}
}

More information can be found in the unification document (internal).

from_universal(x)
Converts a universal representation of the handler (e.g. universal action/observation)

to_string()

The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Notice how all of the instances of keybased command actions, of which there will be typically many in an
environment spec, correspond to exactly the same XML stub.

This is discussed at length in the unification proposal and is a chief example of where manifest consolidation
is needed.

1.19. minerl.herobraine 79

MineRL, Release 0.4.0

Place

class minerl.herobraine.hero.handlers.agent.actions.place.PlaceBlock(blocks: list,
_other=typing.Union[str,
NoneType], _de-
fault=typing.Union[str,
NoneType])

Bases: ItemListAction

An action handler for placing a specific block

from_universal(obs)
Converts a universal representation of the handler (e.g. universal action/observation)

to_string()

The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

Smelt

class minerl.herobraine.hero.handlers.agent.actions.smelt.SmeltItemNearby(items: list,
_other=typing.Union[str,
NoneType], _de-
fault=typing.Union[str,
NoneType])

Bases: CraftAction

An action handler for crafting items when agent is in view of a crafting table

Note when used along side Craft Item, block lists must be disjoint or from_universal will fire multiple times

from_universal(obs)
Converts a universal representation of the handler (e.g. universal action/observation)

to_string()

The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

80 Chapter 1. What is MineRL

MineRL, Release 0.4.0

Chat

class minerl.herobraine.hero.handlers.agent.actions.chat.ChatAction

Bases: Action

Handler which lets agents send Minecraft chat messages

Note: this may currently be limited to the first agent sending messages (check Malmo for this)

This can be used to execute MINECRAFT COMMANDS !!!

Example usage:

ChatAction()

To summon a creeper, use this action dictionary:

{"chat": "/summon creeper"}

from_universal(x)
Converts a universal representation of the handler (e.g. universal action/observation)

to_string()

The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

Observation Handlers

Observation handlers define what observation data agents receive (e.g. POV image, lifestats)

When used to create a gym, you should override create_observables and pass the observation handlers to this function.
See the Custom Environment Tutorial for more.

Compass

class minerl.herobraine.hero.handlers.agent.observations.compass.CompassObservation(angle=True,
dis-
tance=False)

Bases: TranslationHandlerGroup

Defines compass observations.

Parameters
• angle (bool, optional) – Whether or not to include angle observation. Defaults to True.

• distance (bool, optional) – Whether or not ot include distance observation. Defaults
to False.

Example usage:

1.19. minerl.herobraine 81

https://minerl.readthedocs.io/en/latest/tutorials/custom_environments.html

MineRL, Release 0.4.0

A compass observation object which gives angle and distance information
CompassObservation(True, True)

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

Damage Source

class minerl.herobraine.hero.handlers.agent.observations.damage_source.
ObservationFromDamageSource

Bases: TranslationHandlerGroup

Includes the most recent damage event including the amount, type, location, and other properties.

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

82 Chapter 1. What is MineRL

MineRL, Release 0.4.0

Equipped Item

class minerl.herobraine.hero.handlers.agent.observations.equipped_item.EquippedItemObservation(items:
Se-
quence[str],
main-
hand:
bool
=
True,
off-
hand:
bool
=
False,
ar-
mor:
bool
=
False,
_de-
fault:
str
=
'none',
_other:
str
=
'other')

Bases: TranslationHandlerGroup

Enables the observation of equipped items in the main, offhand, and armor slots of the agent.

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

1.19. minerl.herobraine 83

MineRL, Release 0.4.0

Inventory

class minerl.herobraine.hero.handlers.agent.observations.inventory.FlatInventoryObservation(item_list:
Se-
quence[str],
_other='other')

Bases: TranslationHandler

Handles GUI Container Observations for selected items

add_to_mission_spec(mission_spec)

from_hero(obs)
Converts the Hero observation into a one-hot of the inventory items for a given inventory container. Ignores
variant / color :param obs: :return:

from_universal(obs)
Converts a universal representation of the handler (e.g. universal action/observation)

logger = <Logger minerl.herobraine.hero.handlers.agent.observations.inventory.
FlatInventoryObservation
(WARNING)>

to_string()

The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

Lifestats

class
minerl.herobraine.hero.handlers.agent.observations.lifestats.ObservationFromLifeStats

Bases: TranslationHandlerGroup

Groups all of the lifestats observations together to correspond to one XML element.

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

84 Chapter 1. What is MineRL

MineRL, Release 0.4.0

Location Stats

class minerl.herobraine.hero.handlers.agent.observations.location_stats.
ObservationFromCurrentLocation

Bases: TranslationHandlerGroup

Includes the current biome, how likely rain and snow are there, as well as the current light level, how bright the
sky is, and if the player can see the sky.

Also includes x, y, z, roll, and pitch

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

Base Stats

class minerl.herobraine.hero.handlers.agent.observations.mc_base_stats.ObserveFromFullStats(stat_key)
Bases: TranslationHandlerGroup

Includes the use_item statistics for every item in MC that can be used

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

POV

class minerl.herobraine.hero.handlers.agent.observations.pov.POVObservation(video_resolution:
Tuple[int, int],
include_depth:
bool = False)

Bases: KeymapTranslationHandler

Handles POV observations.

from_hero(obs)
Converts a “hero” representation of an instance of this handler to a member of the space.

1.19. minerl.herobraine 85

MineRL, Release 0.4.0

to_string()

The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

1.19.3 Server Handlers

Server Start Handlers

Server start handlers allow you to set the initial state of the World (e.g. weather, time)

When used to create a Gym environment, they should be passed to create_server_initial_conditions

class minerl.herobraine.hero.handlers.server.start.SpawningInitialCondition(allow_spawning:
bool)

Bases: Handler

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

class minerl.herobraine.hero.handlers.server.start.TimeInitialCondition(allow_passage_of_time:
bool, start_time:
Optional[int] = None)

Bases: Handler

Sets the initial world time as well as whether time can pass.

Example usage:

Sets time to morning and stops passing of time
TimeInitialCondition(False, 23000)

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

86 Chapter 1. What is MineRL

MineRL, Release 0.4.0

class minerl.herobraine.hero.handlers.server.start.WeatherInitialCondition(weather: str)
Bases: Handler

Sets the initial weather condition in the world.

Example usage:

Sets weather to thunder
WeatherInitialCondition("thunder")

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

Server Quit Handlers

These handlers allow episode termination based on server conditions (e.g. time passed)

When used to create a Gym environment, they should be passed to create_server_quit_producers

class minerl.herobraine.hero.handlers.server.quit.ServerQuitFromTimeUp(time_limit_ms: int,
descrip-
tion='out_of_time')

Bases: Handler

Forces the server to quit after a certain time_limit_ms also specifies a description parameter for the xml.

Example usage

ServerQuitFromTimeUp(50000)

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

class minerl.herobraine.hero.handlers.server.quit.ServerQuitWhenAnyAgentFinishes

Bases: Handler

Forces the server to quit if any of the agents involved quits. Has no parameters.

Example usage:

1.19. minerl.herobraine 87

MineRL, Release 0.4.0

ServerQuitWhenAnyAgentFinishes()

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

World Handlers

World handlers provide a number of ways to generate and modify the Minecraft world (e.g. specifying the type of world
to be created, like Superflat, or drawing shapes and blocks in the world).

When used to create a Gym environment, they should be passed to create_server_world_generators

class minerl.herobraine.hero.handlers.server.world.BiomeGenerator(biome: Union[int, str],
force_reset: bool = True)

Bases: Handler

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

class minerl.herobraine.hero.handlers.server.world.DefaultWorldGenerator(force_reset=True,
generator_options:
str = '{}')

Bases: Handler

Generates a world using minecraft procedural generation (this is the default world type in minecraft).

Parameters
• force_reset (bool, optional) – If the world should be reset every episode.. Defaults

to True.

• generator_options – A JSON object specifying parameters to the procedural generator.

Example usage:

Generates a default world that does not reset every episode (e.g. if blocks get␣
→˓broken in one episode
they will not be replaced in the next)
DefaultWorldGenerator(False, "")

88 Chapter 1. What is MineRL

MineRL, Release 0.4.0

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

class minerl.herobraine.hero.handlers.server.world.DrawingDecorator(to_draw: str)
Bases: Handler

Draws shapes (e.g. spheres, cuboids) in the world.

Example usage:

draws an empty square of gold blocks
DrawingDecorator('

<DrawCuboid x1="3" y1="4" z1="3" x2="3" y2="6" z2="-3" type="gold_block"/>
<DrawCuboid x1="3" y1="4" z1="3" x2="-3" y2="6" z2="3" type="gold_block"/>
<DrawCuboid x1="-3" y1="4" z1="-3" x2="3" y2="6" z2="-3" type="gold_block"/>
<DrawCuboid x1="-3" y1="4" z1="-3" x2="-3" y2="6" z2="3" type="gold_block"/>

')

See Project Malmo for more

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

class minerl.herobraine.hero.handlers.server.world.FileWorldGenerator(filename: str,
destroy_after_use: bool
= True)

Bases: Handler

Generates a world from a file.

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

1.19. minerl.herobraine 89

MineRL, Release 0.4.0

class minerl.herobraine.hero.handlers.server.world.FlatWorldGenerator(force_reset: bool = True,
generatorString: str = '')

Bases: Handler

Generates a world that is a flat landscape.

Example usage:

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

class minerl.herobraine.hero.handlers.server.world.VillageSpawnDecorator

Bases: Handler

to_string()→ str
The unique identifier for the agent handler. This is used for constructing action/observation spaces and
unioning different env specifications.

xml_template()→ str
Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and has access to all of the member variables of the class.

Note: This is not an abstract method so that handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

90 Chapter 1. What is MineRL

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

91

MineRL, Release 0.4.0

92 Chapter 2. Indices and tables

PYTHON MODULE INDEX

m
minerl.data, 66
minerl.env._singleagent, 62
minerl.env.malmo, 63
minerl.herobraine.hero.handlers.agent.actions.camera,

77
minerl.herobraine.hero.handlers.agent.actions.chat,

81
minerl.herobraine.hero.handlers.agent.actions.craft,

77
minerl.herobraine.hero.handlers.agent.actions.equip,

78
minerl.herobraine.hero.handlers.agent.actions.keyboard,

79
minerl.herobraine.hero.handlers.agent.actions.place,

80
minerl.herobraine.hero.handlers.agent.actions.smelt,

80
minerl.herobraine.hero.handlers.agent.observations.compass,

81
minerl.herobraine.hero.handlers.agent.observations.damage_source,

82
minerl.herobraine.hero.handlers.agent.observations.equipped_item,

83
minerl.herobraine.hero.handlers.agent.observations.inventory,

84
minerl.herobraine.hero.handlers.agent.observations.lifestats,

84
minerl.herobraine.hero.handlers.agent.observations.location_stats,

85
minerl.herobraine.hero.handlers.agent.observations.mc_base_stats,

85
minerl.herobraine.hero.handlers.agent.observations.pov,

85
minerl.herobraine.hero.handlers.agent.quit,

73
minerl.herobraine.hero.handlers.agent.reward,

74
minerl.herobraine.hero.handlers.agent.start,

69
minerl.herobraine.hero.handlers.server.quit,

87

minerl.herobraine.hero.handlers.server.start,
86

minerl.herobraine.hero.handlers.server.world,
88

93

MineRL, Release 0.4.0

94 Python Module Index

INDEX

Symbols
_SingleAgentEnv (class in minerl.env._singleagent), 62

A
action_space (minerl.data.DataPipeline property), 66
actor_name (minerl.env.malmo.MinecraftInstance prop-

erty), 64
add_existing_instance() (min-

erl.env.malmo.InstanceManager class method),
63

add_keep_alive() (min-
erl.env.malmo.InstanceManager class method),
63

add_to_mission_spec() (min-
erl.herobraine.hero.handlers.agent.observations.inventory.FlatInventoryObservation
method), 84

AgentQuitFromCraftingItem (class in min-
erl.herobraine.hero.handlers.agent.quit),
73

AgentQuitFromPossessingItem (class in min-
erl.herobraine.hero.handlers.agent.quit), 73

AgentQuitFromTouchingBlockType (class in min-
erl.herobraine.hero.handlers.agent.quit), 74

AgentStartBreakSpeedMultiplier (class in min-
erl.herobraine.hero.handlers.agent.start), 69

AgentStartNear (class in min-
erl.herobraine.hero.handlers.agent.start),
70

AgentStartPlacement (class in min-
erl.herobraine.hero.handlers.agent.start),
70

allocate_pool() (minerl.env.malmo.InstanceManager
class method), 63

B
batch_iter() (minerl.data.DataPipeline method), 66
BiomeGenerator (class in min-

erl.herobraine.hero.handlers.server.world),
88

C
CameraAction (class in min-

erl.herobraine.hero.handlers.agent.actions.camera),
77

ChatAction (class in min-
erl.herobraine.hero.handlers.agent.actions.chat),
81

client_socket (minerl.env.malmo.MinecraftInstance
property), 64

client_socket_close() (min-
erl.env.malmo.MinecraftInstance method),
64

client_socket_recv_message() (min-
erl.env.malmo.MinecraftInstance method),
64

client_socket_send_message() (min-
erl.env.malmo.MinecraftInstance method),
64

client_socket_shutdown() (min-
erl.env.malmo.MinecraftInstance method),
64

close() (minerl.env.malmo.MinecraftInstance method),
64

CompassObservation (class in min-
erl.herobraine.hero.handlers.agent.observations.compass),
81

configure_malmo_base_port() (min-
erl.env.malmo.InstanceManager class method),
63

CONSTANT (minerl.env.malmo.SeedType attribute), 65
ConstantReward (class in min-

erl.herobraine.hero.handlers.agent.reward),
74

CraftAction (class in min-
erl.herobraine.hero.handlers.agent.actions.craft),
77

CraftNearbyAction (class in min-
erl.herobraine.hero.handlers.agent.actions.craft),
78

create_multiagent_instance_socket() (min-
erl.env.malmo.MinecraftInstance method),
64

CustomAsyncRemoteMethod (class in min-
erl.env.malmo), 63

95

MineRL, Release 0.4.0

D
DataPipeline (class in minerl.data), 66
DEFAULT_IP (minerl.env.malmo.InstanceManager

attribute), 63
DefaultWorldGenerator (class in min-

erl.herobraine.hero.handlers.server.world),
88

download() (in module minerl.data), 68
DrawingDecorator (class in min-

erl.herobraine.hero.handlers.server.world),
89

E
EquipAction (class in min-

erl.herobraine.hero.handlers.agent.actions.equip),
78

EquippedItemObservation (class in min-
erl.herobraine.hero.handlers.agent.observations.equipped_item),
83

F
FileWorldGenerator (class in min-

erl.herobraine.hero.handlers.server.world),
89

FlatInventoryObservation (class in min-
erl.herobraine.hero.handlers.agent.observations.inventory),
84

FlatWorldGenerator (class in min-
erl.herobraine.hero.handlers.server.world),
89

from_hero() (minerl.herobraine.hero.handlers.agent.observations.inventory.FlatInventoryObservation
method), 84

from_hero() (minerl.herobraine.hero.handlers.agent.observations.pov.POVObservation
method), 85

from_hero() (minerl.herobraine.hero.handlers.agent.reward.ConstantReward
method), 74

from_hero() (minerl.herobraine.hero.handlers.agent.reward.RewardHandler
method), 77

from_universal() (min-
erl.herobraine.hero.handlers.agent.actions.camera.CameraAction
method), 77

from_universal() (min-
erl.herobraine.hero.handlers.agent.actions.chat.ChatAction
method), 81

from_universal() (min-
erl.herobraine.hero.handlers.agent.actions.craft.CraftAction
method), 77

from_universal() (min-
erl.herobraine.hero.handlers.agent.actions.equip.EquipAction
method), 78

from_universal() (min-
erl.herobraine.hero.handlers.agent.actions.keyboard.KeybasedCommandAction
method), 79

from_universal() (min-
erl.herobraine.hero.handlers.agent.actions.place.PlaceBlock
method), 80

from_universal() (min-
erl.herobraine.hero.handlers.agent.actions.smelt.SmeltItemNearby
method), 80

from_universal() (min-
erl.herobraine.hero.handlers.agent.observations.inventory.FlatInventoryObservation
method), 84

from_universal() (min-
erl.herobraine.hero.handlers.agent.reward.ConstantReward
method), 74

from_universal() (min-
erl.herobraine.hero.handlers.agent.reward.RewardForCollectingItems
method), 75

from_universal() (min-
erl.herobraine.hero.handlers.agent.reward.RewardForCollectingItemsOnce
method), 75

from_universal() (min-
erl.herobraine.hero.handlers.agent.reward.RewardForDistanceTraveledToCompassTarget
method), 75

from_universal() (min-
erl.herobraine.hero.handlers.agent.reward.RewardForMissionEnd
method), 76

from_universal() (min-
erl.herobraine.hero.handlers.agent.reward.RewardForTouchingBlockType
method), 76

G
GENERATED (minerl.env.malmo.SeedType attribute), 65
get_index() (minerl.env.malmo.SeedType class

method), 65
get_instance() (minerl.env.malmo.InstanceManager

class method), 63
get_output() (minerl.env.malmo.MinecraftInstance

method), 64
get_trajectory_names() (minerl.data.DataPipeline

method), 66

H
had_to_clean (minerl.env.malmo.MinecraftInstance

property), 65
has_client_socket() (min-

erl.env.malmo.MinecraftInstance method),
65

headless (minerl.env.malmo.InstanceManager at-
tribute), 64

host (minerl.env.malmo.MinecraftInstance property), 65

I
InstanceManager (class in minerl.env.malmo), 63
InventoryAgentStart (class in min-

erl.herobraine.hero.handlers.agent.start),
70

96 Index

MineRL, Release 0.4.0

is_remote() (minerl.env.malmo.InstanceManager class
method), 64

J
jdwp_port (minerl.env.malmo.MinecraftInstance prop-

erty), 65

K
KEEP_ALIVE_PYRO_FREQUENCY (min-

erl.env.malmo.InstanceManager attribute),
63

KeybasedCommandAction (class in min-
erl.herobraine.hero.handlers.agent.actions.keyboard),
79

kill() (minerl.env.malmo.MinecraftInstance method),
65

L
launch() (minerl.env.malmo.MinecraftInstance

method), 65
launch_instance_manager() (in module min-

erl.env.malmo), 65
launch_queue_logger_thread() (in module min-

erl.env.malmo), 65
load_data() (minerl.data.DataPipeline method), 67
logger (minerl.herobraine.hero.handlers.agent.actions.equip.EquipAction

attribute), 78
logger (minerl.herobraine.hero.handlers.agent.observations.inventory.FlatInventoryObservation

attribute), 84

M
make() (in module minerl.data), 68
managed (minerl.env.malmo.InstanceManager attribute),

64
MAX_PIPE_LENGTH (min-

erl.env.malmo.MinecraftInstance attribute),
64

MAXINSTANCES (minerl.env.malmo.InstanceManager at-
tribute), 63

MINECRAFT_DIR (minerl.env.malmo.InstanceManager
attribute), 63

MinecraftInstance (class in minerl.env.malmo), 64
minerl.data

module, 66
minerl.env._singleagent

module, 62
minerl.env.malmo

module, 63
minerl.herobraine.hero.handlers.agent.actions.camera

module, 77
minerl.herobraine.hero.handlers.agent.actions.chat

module, 81
minerl.herobraine.hero.handlers.agent.actions.craft

module, 77

minerl.herobraine.hero.handlers.agent.actions.equip
module, 78

minerl.herobraine.hero.handlers.agent.actions.keyboard
module, 79

minerl.herobraine.hero.handlers.agent.actions.place
module, 80

minerl.herobraine.hero.handlers.agent.actions.smelt
module, 80

minerl.herobraine.hero.handlers.agent.observations.compass
module, 81

minerl.herobraine.hero.handlers.agent.observations.damage_source
module, 82

minerl.herobraine.hero.handlers.agent.observations.equipped_item
module, 83

minerl.herobraine.hero.handlers.agent.observations.inventory
module, 84

minerl.herobraine.hero.handlers.agent.observations.lifestats
module, 84

minerl.herobraine.hero.handlers.agent.observations.location_stats
module, 85

minerl.herobraine.hero.handlers.agent.observations.mc_base_stats
module, 85

minerl.herobraine.hero.handlers.agent.observations.pov
module, 85

minerl.herobraine.hero.handlers.agent.quit
module, 73

minerl.herobraine.hero.handlers.agent.reward
module, 74

minerl.herobraine.hero.handlers.agent.start
module, 69

minerl.herobraine.hero.handlers.server.quit
module, 87

minerl.herobraine.hero.handlers.server.start
module, 86

minerl.herobraine.hero.handlers.server.world
module, 88

module
minerl.data, 66
minerl.env._singleagent, 62
minerl.env.malmo, 63
minerl.herobraine.hero.handlers.agent.actions.camera,

77
minerl.herobraine.hero.handlers.agent.actions.chat,

81
minerl.herobraine.hero.handlers.agent.actions.craft,

77
minerl.herobraine.hero.handlers.agent.actions.equip,

78
minerl.herobraine.hero.handlers.agent.actions.keyboard,

79
minerl.herobraine.hero.handlers.agent.actions.place,

80
minerl.herobraine.hero.handlers.agent.actions.smelt,

80

Index 97

MineRL, Release 0.4.0

minerl.herobraine.hero.handlers.agent.observations.compass,
81

minerl.herobraine.hero.handlers.agent.observations.damage_source,
82

minerl.herobraine.hero.handlers.agent.observations.equipped_item,
83

minerl.herobraine.hero.handlers.agent.observations.inventory,
84

minerl.herobraine.hero.handlers.agent.observations.lifestats,
84

minerl.herobraine.hero.handlers.agent.observations.location_stats,
85

minerl.herobraine.hero.handlers.agent.observations.mc_base_stats,
85

minerl.herobraine.hero.handlers.agent.observations.pov,
85

minerl.herobraine.hero.handlers.agent.quit,
73

minerl.herobraine.hero.handlers.agent.reward,
74

minerl.herobraine.hero.handlers.agent.start,
69

minerl.herobraine.hero.handlers.server.quit,
87

minerl.herobraine.hero.handlers.server.start,
86

minerl.herobraine.hero.handlers.server.world,
88

N
ninstances (minerl.env.malmo.InstanceManager

attribute), 64
NONE (minerl.env.malmo.SeedType attribute), 65

O
observation_space (minerl.data.DataPipeline prop-

erty), 67
ObservationFromCurrentLocation (class in min-

erl.herobraine.hero.handlers.agent.observations.location_stats),
85

ObservationFromDamageSource (class in min-
erl.herobraine.hero.handlers.agent.observations.damage_source),
82

ObservationFromLifeStats (class in min-
erl.herobraine.hero.handlers.agent.observations.lifestats),
84

ObserveFromFullStats (class in min-
erl.herobraine.hero.handlers.agent.observations.mc_base_stats),
85

P
PlaceBlock (class in min-

erl.herobraine.hero.handlers.agent.actions.place),
80

port (minerl.env.malmo.MinecraftInstance property), 65
POVObservation (class in min-

erl.herobraine.hero.handlers.agent.observations.pov),
85

R
RandomInventoryAgentStart (class in min-

erl.herobraine.hero.handlers.agent.start),
71

RandomizedStartDecorator (class in min-
erl.herobraine.hero.handlers.agent.start),
71

read_frame() (minerl.data.DataPipeline static
method), 67

release_lock() (minerl.env.malmo.MinecraftInstance
method), 65

REMOTE (minerl.env.malmo.InstanceManager attribute),
63

render() (minerl.env._singleagent._SingleAgentEnv
method), 62

reset() (minerl.env._singleagent._SingleAgentEnv
method), 62

reset() (minerl.herobraine.hero.handlers.agent.actions.equip.EquipAction
method), 78

reset() (minerl.herobraine.hero.handlers.agent.reward.RewardForDistanceTraveledToCompassTarget
method), 75

reset() (minerl.herobraine.hero.handlers.agent.reward.RewardForTouchingBlockType
method), 76

RewardForCollectingItems (class in min-
erl.herobraine.hero.handlers.agent.reward),
74

RewardForCollectingItemsOnce (class in min-
erl.herobraine.hero.handlers.agent.reward),
75

RewardForDistanceTraveledToCompassTarget
(class in min-
erl.herobraine.hero.handlers.agent.reward),
75

RewardForMissionEnd (class in min-
erl.herobraine.hero.handlers.agent.reward),
76

RewardForTouchingBlockType (class in min-
erl.herobraine.hero.handlers.agent.reward),
76

RewardHandler (class in min-
erl.herobraine.hero.handlers.agent.reward),
77

S
sarsd_iter() (minerl.data.DataPipeline method), 67
SCHEMAS_DIR (minerl.env.malmo.InstanceManager at-

tribute), 63
SeedType (class in minerl.env.malmo), 65
seq_iter() (minerl.data.DataPipeline method), 67

98 Index

MineRL, Release 0.4.0

ServerQuitFromTimeUp (class in min-
erl.herobraine.hero.handlers.server.quit),
87

ServerQuitWhenAnyAgentFinishes (class in min-
erl.herobraine.hero.handlers.server.quit), 87

set_valid_jdwp_port_for_instance() (min-
erl.env.malmo.InstanceManager class method),
64

shutdown() (minerl.env.malmo.InstanceManager class
method), 64

SimpleInventoryAgentStart (class in min-
erl.herobraine.hero.handlers.agent.start),
72

SmeltItemNearby (class in min-
erl.herobraine.hero.handlers.agent.actions.smelt),
80

SpawningInitialCondition (class in min-
erl.herobraine.hero.handlers.server.start),
86

spec (minerl.data.DataPipeline property), 68
SPECIFIED (minerl.env.malmo.SeedType attribute), 65
StartingFoodAgentStart (class in min-

erl.herobraine.hero.handlers.agent.start),
72

StartingHealthAgentStart (class in min-
erl.herobraine.hero.handlers.agent.start),
72

STATUS_DIR (minerl.env.malmo.InstanceManager
attribute), 63

status_dir (minerl.env.malmo.MinecraftInstance prop-
erty), 65

step() (minerl.env._singleagent._SingleAgentEnv
method), 62

T
TimeInitialCondition (class in min-

erl.herobraine.hero.handlers.server.start),
86

to_string() (minerl.herobraine.hero.handlers.agent.actions.camera.CameraAction
method), 77

to_string() (minerl.herobraine.hero.handlers.agent.actions.chat.ChatAction
method), 81

to_string() (minerl.herobraine.hero.handlers.agent.actions.craft.CraftAction
method), 78

to_string() (minerl.herobraine.hero.handlers.agent.actions.craft.CraftNearbyAction
method), 78

to_string() (minerl.herobraine.hero.handlers.agent.actions.keyboard.KeybasedCommandAction
method), 79

to_string() (minerl.herobraine.hero.handlers.agent.actions.place.PlaceBlock
method), 80

to_string() (minerl.herobraine.hero.handlers.agent.actions.smelt.SmeltItemNearby
method), 80

to_string() (minerl.herobraine.hero.handlers.agent.observations.compass.CompassObservation
method), 82

to_string() (minerl.herobraine.hero.handlers.agent.observations.damage_source.ObservationFromDamageSource
method), 82

to_string() (minerl.herobraine.hero.handlers.agent.observations.equipped_item.EquippedItemObservation
method), 83

to_string() (minerl.herobraine.hero.handlers.agent.observations.inventory.FlatInventoryObservation
method), 84

to_string() (minerl.herobraine.hero.handlers.agent.observations.lifestats.ObservationFromLifeStats
method), 84

to_string() (minerl.herobraine.hero.handlers.agent.observations.location_stats.ObservationFromCurrentLocation
method), 85

to_string() (minerl.herobraine.hero.handlers.agent.observations.mc_base_stats.ObserveFromFullStats
method), 85

to_string() (minerl.herobraine.hero.handlers.agent.observations.pov.POVObservation
method), 85

to_string() (minerl.herobraine.hero.handlers.agent.quit.AgentQuitFromCraftingItem
method), 73

to_string() (minerl.herobraine.hero.handlers.agent.quit.AgentQuitFromPossessingItem
method), 73

to_string() (minerl.herobraine.hero.handlers.agent.quit.AgentQuitFromTouchingBlockType
method), 74

to_string() (minerl.herobraine.hero.handlers.agent.reward.RewardForDistanceTraveledToCompassTarget
method), 75

to_string() (minerl.herobraine.hero.handlers.agent.reward.RewardForMissionEnd
method), 76

to_string() (minerl.herobraine.hero.handlers.agent.reward.RewardForTouchingBlockType
method), 76

to_string() (minerl.herobraine.hero.handlers.agent.start.AgentStartBreakSpeedMultiplier
method), 69

to_string() (minerl.herobraine.hero.handlers.agent.start.AgentStartNear
method), 70

to_string() (minerl.herobraine.hero.handlers.agent.start.AgentStartPlacement
method), 70

to_string() (minerl.herobraine.hero.handlers.agent.start.InventoryAgentStart
method), 71

to_string() (minerl.herobraine.hero.handlers.agent.start.RandomizedStartDecorator
method), 71

to_string() (minerl.herobraine.hero.handlers.agent.start.StartingFoodAgentStart
method), 72

to_string() (minerl.herobraine.hero.handlers.agent.start.StartingHealthAgentStart
method), 72

to_string() (minerl.herobraine.hero.handlers.server.quit.ServerQuitFromTimeUp
method), 87

to_string() (minerl.herobraine.hero.handlers.server.quit.ServerQuitWhenAnyAgentFinishes
method), 88

to_string() (minerl.herobraine.hero.handlers.server.start.SpawningInitialCondition
method), 86

to_string() (minerl.herobraine.hero.handlers.server.start.TimeInitialCondition
method), 86

to_string() (minerl.herobraine.hero.handlers.server.start.WeatherInitialCondition
method), 87

to_string() (minerl.herobraine.hero.handlers.server.world.BiomeGenerator
method), 88

to_string() (minerl.herobraine.hero.handlers.server.world.DefaultWorldGenerator
method), 88

Index 99

MineRL, Release 0.4.0

to_string() (minerl.herobraine.hero.handlers.server.world.DrawingDecorator
method), 89

to_string() (minerl.herobraine.hero.handlers.server.world.FileWorldGenerator
method), 89

to_string() (minerl.herobraine.hero.handlers.server.world.FlatWorldGenerator
method), 90

to_string() (minerl.herobraine.hero.handlers.server.world.VillageSpawnDecorator
method), 90

V
VillageSpawnDecorator (class in min-

erl.herobraine.hero.handlers.server.world),
90

W
WeatherInitialCondition (class in min-

erl.herobraine.hero.handlers.server.start),
87

X
X11_DIR (minerl.env.malmo.InstanceManager attribute),

63
xml_template() (min-

erl.herobraine.hero.handlers.agent.actions.camera.CameraAction
method), 77

xml_template() (min-
erl.herobraine.hero.handlers.agent.actions.chat.ChatAction
method), 81

xml_template() (min-
erl.herobraine.hero.handlers.agent.actions.craft.CraftAction
method), 78

xml_template() (min-
erl.herobraine.hero.handlers.agent.actions.craft.CraftNearbyAction
method), 78

xml_template() (min-
erl.herobraine.hero.handlers.agent.actions.equip.EquipAction
method), 78

xml_template() (min-
erl.herobraine.hero.handlers.agent.actions.keyboard.KeybasedCommandAction
method), 79

xml_template() (min-
erl.herobraine.hero.handlers.agent.actions.place.PlaceBlock
method), 80

xml_template() (min-
erl.herobraine.hero.handlers.agent.actions.smelt.SmeltItemNearby
method), 80

xml_template() (min-
erl.herobraine.hero.handlers.agent.observations.compass.CompassObservation
method), 82

xml_template() (min-
erl.herobraine.hero.handlers.agent.observations.damage_source.ObservationFromDamageSource
method), 82

xml_template() (min-
erl.herobraine.hero.handlers.agent.observations.equipped_item.EquippedItemObservation

method), 83
xml_template() (min-

erl.herobraine.hero.handlers.agent.observations.inventory.FlatInventoryObservation
method), 84

xml_template() (min-
erl.herobraine.hero.handlers.agent.observations.lifestats.ObservationFromLifeStats
method), 84

xml_template() (min-
erl.herobraine.hero.handlers.agent.observations.location_stats.ObservationFromCurrentLocation
method), 85

xml_template() (min-
erl.herobraine.hero.handlers.agent.observations.mc_base_stats.ObserveFromFullStats
method), 85

xml_template() (min-
erl.herobraine.hero.handlers.agent.observations.pov.POVObservation
method), 86

xml_template() (min-
erl.herobraine.hero.handlers.agent.quit.AgentQuitFromCraftingItem
method), 73

xml_template() (min-
erl.herobraine.hero.handlers.agent.quit.AgentQuitFromPossessingItem
method), 74

xml_template() (min-
erl.herobraine.hero.handlers.agent.quit.AgentQuitFromTouchingBlockType
method), 74

xml_template() (min-
erl.herobraine.hero.handlers.agent.reward.RewardForDistanceTraveledToCompassTarget
method), 75

xml_template() (min-
erl.herobraine.hero.handlers.agent.reward.RewardForMissionEnd
method), 76

xml_template() (min-
erl.herobraine.hero.handlers.agent.reward.RewardForTouchingBlockType
method), 76

xml_template() (min-
erl.herobraine.hero.handlers.agent.start.AgentStartBreakSpeedMultiplier
method), 69

xml_template() (min-
erl.herobraine.hero.handlers.agent.start.AgentStartNear
method), 70

xml_template() (min-
erl.herobraine.hero.handlers.agent.start.AgentStartPlacement
method), 70

xml_template() (min-
erl.herobraine.hero.handlers.agent.start.InventoryAgentStart
method), 71

xml_template() (min-
erl.herobraine.hero.handlers.agent.start.RandomInventoryAgentStart
method), 71

xml_template() (min-
erl.herobraine.hero.handlers.agent.start.RandomizedStartDecorator
method), 71

xml_template() (min-
erl.herobraine.hero.handlers.agent.start.StartingFoodAgentStart

100 Index

MineRL, Release 0.4.0

method), 72
xml_template() (min-

erl.herobraine.hero.handlers.agent.start.StartingHealthAgentStart
method), 73

xml_template() (min-
erl.herobraine.hero.handlers.server.quit.ServerQuitFromTimeUp
method), 87

xml_template() (min-
erl.herobraine.hero.handlers.server.quit.ServerQuitWhenAnyAgentFinishes
method), 88

xml_template() (min-
erl.herobraine.hero.handlers.server.start.SpawningInitialCondition
method), 86

xml_template() (min-
erl.herobraine.hero.handlers.server.start.TimeInitialCondition
method), 86

xml_template() (min-
erl.herobraine.hero.handlers.server.start.WeatherInitialCondition
method), 87

xml_template() (min-
erl.herobraine.hero.handlers.server.world.BiomeGenerator
method), 88

xml_template() (min-
erl.herobraine.hero.handlers.server.world.DefaultWorldGenerator
method), 89

xml_template() (min-
erl.herobraine.hero.handlers.server.world.DrawingDecorator
method), 89

xml_template() (min-
erl.herobraine.hero.handlers.server.world.FileWorldGenerator
method), 89

xml_template() (min-
erl.herobraine.hero.handlers.server.world.FlatWorldGenerator
method), 90

xml_template() (min-
erl.herobraine.hero.handlers.server.world.VillageSpawnDecorator
method), 90

Index 101

	What is MineRL
	Installation
	Hello World: Your First Agent
	Creating an environment
	Taking actions
	No-op actions and a better policy

	Downloading and Sampling The Dataset
	Introduction
	Setting up environment variables
	Downloading the MineRL Dataset with minerl.data.download
	Sampling the Dataset with buffered_batch_iter
	Moderate Human Demonstrations

	K-means exploration
	Visualizing The Data minerl.viewer
	Interactive Mode minerl.interactor
	Creating A Custom Environment
	Introduction
	Setup
	Contruct the Environment Class
	Modify the World
	Set the Initial Agent Inventory
	Create Reward Functionality
	Construct a Quit Handler
	Allow the Agent to Place Water
	Give Extra Observations
	Set the Time
	Other Functions to Implement
	Using the Environment

	Using Minecraft Commands
	Introduction
	How Can MC Commands speed up training?
	Adding the ChatAction to your envspec
	Abstracted Command Sending
	Advanced use

	General Information
	Environment Handlers
	Environment Handlers
	Spaces
	Enum Spaces

	Observations
	Visual Observations - pov, third-person
	Equip Observations - equipped_items

	Actions
	Camera Control - camera
	Tool Control - equip and use

	MineRL Diamond Competition Intro Track Environments
	MineRLTreechop-v0
	Observation Space
	Action Space
	Usage

	MineRLNavigate-v0
	Observation Space
	Action Space
	Usage

	MineRLNavigateDense-v0
	Observation Space
	Action Space
	Usage

	MineRLNavigateExtreme-v0
	Observation Space
	Action Space
	Usage

	MineRLNavigateExtremeDense-v0
	Observation Space
	Action Space
	Usage

	MineRLObtainDiamond-v0
	Observation Space
	Action Space
	Usage

	MineRLObtainDiamondDense-v0
	Observation Space
	Action Space
	Usage

	MineRLObtainIronPickaxe-v0
	Observation Space
	Action Space
	Usage

	MineRLObtainIronPickaxeDense-v0
	Observation Space
	Action Space
	Usage

	MineRL Diamond Competition Research Track Environments
	MineRLTreechopVectorObf-v0
	Observation Space
	Action Space
	Usage

	MineRLNavigateVectorObf-v0
	Observation Space
	Action Space
	Usage

	MineRLNavigateDenseVectorObf-v0
	Observation Space
	Action Space
	Usage

	MineRLNavigateExtremeVectorObf-v0
	Observation Space
	Action Space
	Usage

	MineRLNavigateExtremeDenseVectorObf-v0
	Observation Space
	Action Space
	Usage

	MineRLObtainDiamondVectorObf-v0
	Observation Space
	Action Space
	Usage

	MineRLObtainDiamondDenseVectorObf-v0
	Observation Space
	Action Space
	Usage

	MineRLObtainIronPickaxeVectorObf-v0
	Observation Space
	Action Space
	Usage

	MineRLObtainIronPickaxeDenseVectorObf-v0
	Observation Space
	Action Space
	Usage

	MineRL BASALT Competition Environments
	MineRLBasaltFindCave-v0
	Observation Space
	Action Space
	Starting Inventory
	Usage

	MineRLBasaltMakeWaterfall-v0
	Observation Space
	Action Space
	Starting Inventory
	Usage

	MineRLBasaltCreateVillageAnimalPen-v0
	Observation Space
	Action Space
	Starting Inventory
	Usage

	MineRLBasaltBuildVillageHouse-v0
	Observation Space
	Action Space
	Starting Inventory
	Usage

	Performance tips
	Slowdown in obfuscated environments
	Faster alternative to xvfb

	Links to papers and projects
	Presentations
	MineRL papers
	2019 competitor code/papers
	2020 competitor code/papers
	Other papers that use the MineRL environment
	Other

	Windows FAQ
	The The system cannot find the path specified error (installing)
	The freeze_support error (multiprocessing)

	minerl.env
	MineRLEnv
	InstanceManager

	minerl.data
	MineRLv0

	minerl.herobraine
	Handlers
	Agent Handlers
	Agent Start Handlers
	Agent Quit Handlers
	Reward Handlers
	Action Handlers
	Camera
	Craft
	Equip
	Keyboard
	Place
	Smelt
	Chat

	Observation Handlers
	Compass
	Damage Source
	Equipped Item
	Inventory
	Lifestats
	Location Stats
	Base Stats
	POV

	Server Handlers
	Server Start Handlers
	Server Quit Handlers
	World Handlers

	Indices and tables
	Python Module Index
	Index

