

 [image: alternate text]

MineRL: Towards AI in Minecraft

[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image: biohazard]

Welcome to documentation for the MineRL [http://minerl.io]
project and its related repositories and components!

[image:]

What is MineRL

MineRL is a research project started at Carnegie Mellon University aimed at
developing various aspects of artificial intelligence
within Minecraft. In short MineRL consists of several major
components:

	MineRL-v0 Dataset [http://minerl.io/dataset] – One of the largest imitation learning
datasets with over 60 million frames of recorded human player
data. The dataset includes a set of environments [http://minerl.io/docs/environments] which highlight
many of the hardest problems in modern-day Reinforcement
Learning: sparse rewards and hierarchical policies.

	minerl – A rich python3 package for doing artificial intelligence
research in Minecraft. This includes two major submodules. We develop minerl in our spare time, please consider supporting us on Patreon [https://www.patreon.com/wguss_imushroom]

	minerl.env – A growing set of OpenAI Gym environments
in Minecraft. These environments leverage a synchronous, stable,
and fast fork of Microsoft Malmo called MineRLEnv.

	minerl.data – The main python module for ext with the MineRL-v0 dataset

Tutorials and Guides

	Installation

	Hello World: Your First Agent
	Creating an environment

	Taking actions

	No-op actions and a better policy

	Downloading and Sampling The Dataset
	Introduction

	Setting up environment variables

	Downloading the MineRL Dataset with minerl.data.download

	Sampling the Dataset with buffered_batch_iter

	Moderate Human Demonstrations

	K-means exploration

	Visualizing The Data minerl.viewer

	Interactive Mode minerl.interactor

	Creating A Custom Environment
	Introduction

	Setup

	Contruct the Environment Class

	Modify the World

	Set the Initial Agent Inventory

	Create Reward Functionality

	Construct a Quit Handler

	Allow the Agent to Place Water

	Give Extra Observations

	Set the Time

	Other Functions to Implement

	Using the Environment

	Using Minecraft Commands
	Introduction

	How Can MC Commands speed up training?

	Adding the ChatAction to your envspec

	Abstracted Command Sending

	Advanced use

MineRL Environments

	General Information

	Environment Handlers
	Environment Handlers

	Spaces

	Observations

	Actions

	MineRL Diamond Competition Intro Track Environments
	MineRLTreechop-v0

	MineRLNavigate-v0

	MineRLNavigateDense-v0

	MineRLNavigateExtreme-v0

	MineRLNavigateExtremeDense-v0

	MineRLObtainDiamond-v0

	MineRLObtainDiamondDense-v0

	MineRLObtainIronPickaxe-v0

	MineRLObtainIronPickaxeDense-v0

	MineRL Diamond Competition Research Track Environments
	MineRLTreechopVectorObf-v0

	MineRLNavigateVectorObf-v0

	MineRLNavigateDenseVectorObf-v0

	MineRLNavigateExtremeVectorObf-v0

	MineRLNavigateExtremeDenseVectorObf-v0

	MineRLObtainDiamondVectorObf-v0

	MineRLObtainDiamondDenseVectorObf-v0

	MineRLObtainIronPickaxeVectorObf-v0

	MineRLObtainIronPickaxeDenseVectorObf-v0

	MineRL BASALT Competition Environments
	MineRLBasaltFindCave-v0

	MineRLBasaltMakeWaterfall-v0

	MineRLBasaltCreateVillageAnimalPen-v0

	MineRLBasaltBuildVillageHouse-v0

Notes

	Performance tips
	Slowdown in obfuscated environments

	Faster alternative to xvfb

	Links to papers and projects
	Presentations

	MineRL papers

	2019 competitor code/papers

	2020 competitor code/papers

	Other papers that use the MineRL environment

	Other

	Windows FAQ
	The The system cannot find the path specified error (installing)

	The freeze_support error (multiprocessing)

MineRL package API Reference

	minerl.env
	MineRLEnv

	InstanceManager

	minerl.data
	MineRLv0

	minerl.herobraine
	Handlers

	Agent Handlers

	Server Handlers

Indices and tables

	Index

	Module Index

	Search Page

Installation

Welcome to MineRL! This guide will get you started.

To start using the MineRL dataset and Gym environments comprising MineRL, you’ll need to install the
main python package, minerl.

	First make sure you have JDK 1.8 installed on your
system.

	Windows installer [https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html] – On windows go this link and follow the
instructions to install JDK 8.

	On Mac, you can install java8 using homebrew and AdoptOpenJDK (an open source mirror, used here to get around the fact that Java8 binaries are no longer available directly from Oracle):

brew tap AdoptOpenJDK/openjdk
brew install --cask adoptopenjdk8

	On Debian based systems (Ubuntu!) you can run the following:

sudo add-apt-repository ppa:openjdk-r/ppa
sudo apt-get update
sudo apt-get install openjdk-8-jdk

	Now install the minerl package!:

pip3 install --upgrade minerl

Note

You may need the user flag:
pip3 install --upgrade minerl --user to install properly.

Hello World: Your First Agent

With the minerl package installed on your system you can
now make your first agent in Minecraft!

To get started, let’s first import the necessary packages

import gym
import minerl

Creating an environment

Now we can choose any one of the many environments [http://minerl.io/docs/environments/] included
in the minerl package. To learn more about the environments
checkout the environment documentation [http://minerl.io/docs/environments/].

For this tutorial we’ll choose the MineRLNavigateDense-v0
environment. In this task, the agent is challenged with using
a first-person perspective of a random Minecraft map and
navigating to a target.

To create the environment, simply invoke gym.make

env = gym.make('MineRLNavigateDense-v0')

Caution

Currently minerl only supports environment rendering in headed environments
(servers with monitors attached).

In order to run minerl environments without a head use a software renderer
such as xvfb:

xvfb-run python3 <your_script.py>

Alternatively, you can use an environment variable which automatically adds xvfb when
launching MineRL:

MINERL_HEADLESS=1 python3 <your_script.py>

Note

If you’re worried and want to make sure something is
happening behind the scenes install a logger before
you create the envrionment.

import logging
logging.basicConfig(level=logging.DEBUG)

env = gym.make('MineRLNavigateDense-v0')

Taking actions

As a warm up let’s create a random agent. 🧠

Now we can reset this environment to its first position
and get our first observation from the agent by resetting the environment.

Note

The first time you run this command to complete, it will take a while as it is recompiling
Minecraft with the MineRL simulator mod (can be as long as 15-30 minutes)!

obs = env.reset()

The obs variable will be a dictionary containing the following
observations returned by the environment. In the case of the
MineRLNavigate-v0 environment, three observations are returned:
pov, an RGB image of the agent’s first person perspective;
compassAngle, a float giving the angle of the agent to its
(approximate) target; and inventory, a dictionary containing
the amount of 'dirt' blocks in the agent’s inventory (this
is useful for climbing steep inclines).

{
 'pov': array([[[63, 63, 68],
 [63, 63, 68],
 [63, 63, 68],
 ...,
 [92, 92, 100],
 [92, 92, 100],
 [92, 92, 100]],,

 ...,

 [[95, 118, 176],
 [95, 119, 177],
 [96, 119, 178],
 ...,
 [93, 116, 172],
 [93, 115, 171],
 [92, 115, 170]]], dtype=uint8),
 'compass': {'angle': array(-63.48639)},
 'inventory': {'dirt': 0}
}

Note

To see the exact format of observations returned from
and the exact action format expected by env.step
for any environment refer to the environment reference documentation [http://minerl.io/docs/environments]!

Now let’s take actions through the environment until time runs out
or the agent dies. To do this, we will use the normal OpenAI Gym env.step
method.

done = False

while not done:
 action = env.action_space.sample()
 obs, reward, done, _ = env.step(action)

After running this code the agent should move sporadically until done flag is set to true.
If you see a Minecraft window, it does not update while agent is playing, which is intended behaviour.
To confirm that our agent is at least qualitatively
acting randomly, on the right is a plot of the compass angle over the course of the experiment.

[image: ../_images/compass_angle.png]

No-op actions and a better policy

Now let’s make a hard-coded agent that actually runs
towards the target. 🧠🧠🧠

To do this at every step of the environment we will take the noop
action with a few modifications; in particular, we will only move forward,
jump, attack, and change the agent’s direction to minimize
the angle between the agent’s movement direction and it’s target, compassAngle.

import minerl
import gym
env = gym.make('MineRLNavigateDense-v0')

obs = env.reset()
done = False
net_reward = 0

while not done:
 action = env.action_space.noop()

 action['camera'] = [0, 0.03*obs["compass"]["angle"]]
 action['back'] = 0
 action['forward'] = 1
 action['jump'] = 1
 action['attack'] = 1

 obs, reward, done, info = env.step(
 action)

 net_reward += reward
 print("Total reward: ", net_reward)

After running this agent, you should notice marekedly less sporadic
behaviour. Plotting both the compassAngle and the
net reward over the episode confirm that this policy performs
better than our random policy.

[image: ../_images/compass_angle_better.png]
[image: ../_images/net_reward.png]
Congratulations! You’ve just made your first agent using the
minerl framework!

Downloading and Sampling The Dataset

Introduction

Now that your agent can act in the environment, we should show it how to leverage human
demonstrations.

To get started, let’s download the minimal version of the dataset (two demonstrations from every
environment). Since there are over 20 MineRL environments, this is still a sizeable download, at
about 2 GB.

Then we will sample a few state-action-reward-done tuples from the MineRLObtainDiamond-v0
dataset.

Setting up environment variables

The minerl package uses the MINERL_DATA_ROOT environment variable to locate the data
directory. Please export MINERL_DATA_ROOT=/your/local/path/.

(Here are some tutorials on how to set environment variables on
Linux/Mac [https://phoenixnap.com/kb/linux-set-environment-variable] and
Windows [https://support.shotgunsoftware.com/hc/en-us/articles/114094235653-Setting-global-environment-variables-on-Windows]
computers.)

Downloading the MineRL Dataset with minerl.data.download

To download the minimal dataset into MINERL_DATA_ROOT, run the command:

python3 -m minerl.data.download

Note

The full dataset for a particular environment, or for a particular competition (Diamond or Basalt)
can be downloaded using the --environment ENV_NAME and --competition COMPETITION flags.

ENV_NAME is any Gym environment name from the
documented environments.

COMPETITION is basalt or diamond.

For more information, run python3 -m minerl.data.download --help.

As an example, to download the full dataset for “MineRLObtainDiamond-v0”, you can run

python3 -m minerl.data.download --environment "MineRLObtainDiamond-v0"

Sampling the Dataset with buffered_batch_iter

Now we can build the dataset for MineRLObtainDiamond-v0

There are two ways of sampling from the MineRL dataset: the deprecated but still supported batch_iter, and
buffered_batch_iter. batch_iter is the legacy method, which we’ve kept in the code to avoid breaking changes,
but we have recently realized that, when using batch_size > 1, batch_iter can fail to return a substantial
portion of the data in the epoch.

If you are not already using `data_pipeline.batch_iter`, we recommend against it, because of these issues

The recommended way of sampling from the dataset is:

from minerl.data import BufferedBatchIter
data = minerl.data.make('MineRLObtainDiamond-v0')
iterator = BufferedBatchIter(data)
for current_state, action, reward, next_state, done \
 in iterator.buffered_batch_iter(batch_size=1, num_epochs=1):

 # Print the POV @ the first step of the sequence
 print(current_state['pov'][0])

 # Print the final reward pf the sequence!
 print(reward[-1])

 # Check if final (next_state) is terminal.
 print(done[-1])

 # ... do something with the data.
 print("At the end of trajectories the length"
 "can be < max_sequence_len", len(reward))

Moderate Human Demonstrations

MineRL-v0 uses community driven demonstrations to help researchers develop sample efficient techniques.
Some of these demonstrations are less than optimal, however others could feature bugs with the client,
server errors, or adversarial behavior.

Using the MineRL viewer, you can help curate this dataset by viewing these demonstrations manually and
reporting bad streams by submitting an issue to github with the following information:

	The stream name of the stream in question

	The reason the stream or segment needs to be modified

	The sample / frame number(s) (shown at the bottom of the viewer)

K-means exploration

With the 2020 MineRL competition [https://www.aicrowd.com/challenges/neurips-2020-minerl-competition], we introduced vectorized obfuscated environments [http://minerl.io/docs/environments/index.html#competition-environments] which abstract non-visual state
information as well as the action space of the agent to be continuous vector spaces. See MineRLObtainDiamondVectorObf-v0 [http://minerl.io/docs/environments/index.html#minerlobtaindiamondvectorobf-v0]
for documentation on the evaluation environment for that competition.

To use techniques in the MineRL competition that require discrete actions, we can use k-means [https://en.wikipedia.org/wiki/K-means_clustering] to quantize the human
demonstrations and give our agent n discrete actions representative of actions taken by humans when solving the environment.

To get started, let’s download the MineRLTreechopVectorObf-v0 [https://minerl.io/docs/environments/index.html#minerltreechopvectorobf-v0] environment.

python -m minerl.data.download --environment 'MineRLTreechopVectorObf-v0'

Note

If you are unable to download the data ensure you have the MINERL_DATA_ROOT env variable
set as demonstrated in data sampling [http://minerl.io/docs/tutorials/data_sampling].

Now we load the dataset for MineRLTreechopVectorObf-v0 [https://minerl.io/docs/environments/index.html#minerltreechopvectorobf-v0] and find 32 clusters using sklearn learn

from sklearn.cluster import KMeans

dat = minerl.data.make('MineRLTreechopVectorObf-v0')

Load the dataset storing 1000 batches of actions
act_vectors = []
for _, act, _, _,_ in tqdm.tqdm(dat.batch_iter(16, 32, 2, preload_buffer_size=20)):
 act_vectors.append(act['vector'])
 if len(act_vectors) > 1000:
 break

Reshape these the action batches
acts = np.concatenate(act_vectors).reshape(-1, 64)
kmeans_acts = acts[:100000]

Use sklearn to cluster the demonstrated actions
kmeans = KMeans(n_clusters=32, random_state=0).fit(kmeans_acts)

Now we have 32 actions that represent reasonable actions for our agent to take. Let’s take these and improve our random
hello world agent from before.

i, net_reward, done, env = 0, 0, False, gym.make('MineRLTreechopVectorObf-v0')
obs = env.reset()

while not done:
 # Let's use a frame skip of 4 (could you do better than a hard-coded frame skip?)
 if i % 4 == 0:
 action = {
 'vector': kmeans.cluster_centers_[np.random.choice(NUM_CLUSTERS)]
 }

 obs, reward, done, info = env.step(action)
 env.render()

 if reward > 0:
 print("+{} reward!".format(reward))
 net_reward += reward
 i += 1

print("Total reward: ", net_reward)

Putting this all together we get:

 Visualizing The Data minerl.viewer

Visualizing The Data minerl.viewer

To help you get familiar with the MineRL dataset,
the minerl python package also provides a data trajectory viewer called
minerl.viewer:

Warning

BASALT: minerl.viewer can load BASALT competition data, but is not yet updated to
display the use or equip actions yet.

[image:]
The minerl.viewer program lets you step through individual
trajectories,
showing the observation seen by the player, the action
they took (including camera, movement, and any action described by an MineRL
environment’s action space), and the reward they received.

usage: python3 -m minerl.viewer [-h] environment [stream_name]

positional arguments:
 environment The MineRL environment to visualize. e.g.
 MineRLObtainDiamondDense-v0
 stream_name (optional) The name of the trajectory to visualize. e.g.
 v4_absolute_zucchini_basilisk-13_36805-50154.

optional arguments:
 -h, --help show this help message and exit

Try it out on a random trajectory by running:

Make sure your MINERL_DATA_ROOT is set!
export MINERL_DATA_ROOT='/your/local/path'

Visualizes a random trajectory of MineRLObtainDiamondDense-v0
python3 -m minerl.viewer MineRLObtainDiamondDense-v0

Try it out on a specific trajectory by running:

Make sure your MINERL_DATA_ROOT is set!
export MINERL_DATA_ROOT='/your/local/path'
Visualizes a specific trajectory. v4_absolute_zucch...
python3 -m minerl.viewer MineRLTreechop-v0 \
 v4_absolute_zucchini_basilisk-13_36805-50154

Interactive Mode minerl.interactor

Warning

Interactor works in MineRL versions 0.3.7 and 0.4.4 (or above).
Install 0.3.7 with pip install minerl==0.3.7, or the newest MineRL
with pip install git+https://github.com/minerllabs/minerl.git@dev.

Once you have started training agents, the next step is getting them to interact with human players.
To help achieve this, the minerl python package provides a interactive Minecraft client called
minerl.interactor:

 Creating A Custom Environment

Creating A Custom Environment

Introduction

MineRL supports many ways to customize environments, including modifying the Minecraft world, adding
more observation data, and changing the rewards agents receive.

MineRL provides support for these modifications using a variety of handlers.

In this tutorial, we will introduce how these handlers work by building a simple parkour environment
where an agent will perform an “MLG water bucket jump” onto a block of gold.

“An MLG water is when a player is falling out of the air, or when a player jumps off of something, and they throw down water before they hit the ground to break the fall, and prevent themselves from dying by fall damage.” –Sportskeeda [https://www.sportskeeda.com/minecraft/mlg-minecraft#:~:text=MLG%20Water%20Bucket%20in%20Minecraft&text=MLG%20water%20is%20when%20a,from%20dying%20by%20fall%20damage.]

[image:]
The agent will then mine this gold block to terminate the episode.

See the complete code here [https://github.com/minerllabs/minerl/tree/dev/examples].

Setup

Create a Python file named mlg_wb_specs.py

To start building our environment, let’s import the necessary modules

from minerl.herobraine.env_specs.simple_embodiment import SimpleEmbodimentEnvSpec
from minerl.herobraine.hero.handler import Handler
import minerl.herobraine.hero.handlers as handlers
from typing import List

Next, we will add the following variables:

MLGWB_DOC = """
In MLG Water Bucket, an agent must perform an "MLG Water Bucket" jump
"""

MLGWB_LENGTH = 8000

MLGWB_LENGTH specifies how many time steps the environment can last until termination.

Contruct the Environment Class

In order to create our MineRL Gym environment, we need to inherit from SimpleEmbodimentEnvSpec. This parent class
provides default settings for the environment.

class MLGWB(SimpleEmbodimentEnvSpec):
 def __init__(self, *args, **kwargs):
 if 'name' not in kwargs:
 kwargs['name'] = 'MLGWB-v0'

 super().__init__(*args,
 max_episode_steps=MLGWB_LENGTH,
 reward_threshold=100.0,
 **kwargs)

reward_threshold is a number specifying how much reward the agent must get for the episode to be successful.

Now we will implement a number of methods which SimpleEmbodimentEnvSpec requires.

Modify the World

Lets build a custom Minecraft world.

We’ll use the FlatWorldGenerator handler to make a super flat world and pass it a
generatorString value to specify how we want the world layers to be created. “1;7,2x3,2;1”
represents 1 layer of grass blocks above 2 layers of dirt above 1 layer of bedrock. You can use websites
like “Minecraft Tools [https://minecraft.tools/en/flat.php?biome=1&bloc_1_nb=1&bloc_1_id=2&bloc_2_nb=2&bloc_2_id=3%2F00&bloc_3_nb=1&bloc_3_id=7&village_size=1&village_distance=32&mineshaft_chance=1&stronghold_count=3&stronghold_distance=32&stronghold_spread=3&oceanmonument_spacing=32&oceanmonument_separation=5&biome_1_distance=32&valid=Create+the+Preset#seed]” to easily customize superflat world layers.

We also pass a DrawingDecorator to “draw” blocks into the world.

def create_server_world_generators(self) -> List[Handler]:
 return [
 handlers.FlatWorldGenerator(generatorString="1;7,2x3,2;1"),
 # generate a 3x3 square of obsidian high in the air and a gold block
 # somewhere below it on the ground
 handlers.DrawingDecorator("""
 <DrawCuboid x1="0" y1="5" z1="-6" x2="0" y2="5" z2="-6" type="gold_block"/>
 <DrawCuboid x1="-2" y1="88" z1="-2" x2="2" y2="88" z2="2" type="obsidian"/>
 """)
]

Note

Make sure create_server_world_generators and the following functions are indented under the MLGWB class.

Set the Initial Agent Inventory

Lets now lets use the SimpleInventoryAgentStart handler to give the agent a water bucket and a diamond pickaxe.

Lets also make the agent spawn high in the air (on the obsidian platform) with the AgentStartPlacement handler.

def create_agent_start(self) -> List[Handler]:
 return [
 # make the agent start with these items
 handlers.SimpleInventoryAgentStart([
 dict(type="water_bucket", quantity=1),
 dict(type="diamond_pickaxe", quantity=1)
]),
 # make the agent start 90 blocks high in the air
 handlers.AgentStartPlacement(0, 90, 0, 0, 0)
]

Create Reward Functionality

Lets use the RewardForTouchingBlockType handler
so that the agent receives reward for getting to a gold block.

def create_rewardables(self) -> List[Handler]:
 return [
 # reward the agent for touching a gold block (but only once)
 handlers.RewardForTouchingBlockType([
 {'type':'gold_block', 'behaviour':'onceOnly', 'reward':'50'},
]),
 # also reward on mission end
 handlers.RewardForMissionEnd(50)
]

Construct a Quit Handler

We want the episode to terminate when the agent obtains a gold block.

def create_agent_handlers(self) -> List[Handler]:
 return [
 # make the agent quit when it gets a gold block in its inventory
 handlers.AgentQuitFromPossessingItem([
 dict(type="gold_block", amount=1)
])
]

Allow the Agent to Place Water

We want the agent to be able to place the water bucket, but SimpleEmbodimentEnvSpec
does not provide this ability by default. Note that we call super().create_actionables()
so that we keep the actions which SimpleEmbodimentEnvSpec does provide by default (like movement, jumping)

def create_actionables(self) -> List[Handler]:
 return super().create_actionables() + [
 # allow agent to place water
 handlers.KeybasedCommandAction("use"),
 # also allow it to equip the pickaxe
 handlers.EquipAction(["diamond_pickaxe"])
]

Give Extra Observations

In addition to the POV image data the agent receives as an observation, lets provide
it with compass and lifestats data. We override create_observables just like the previous step.

def create_observables(self) -> List[Handler]:
 return super().create_observables() + [
 # current location and lifestats are returned as additional
 # observations
 handlers.ObservationFromCurrentLocation(),
 handlers.ObservationFromLifeStats()
]

Set the Time

Lets set the time to morning.

def create_server_initial_conditions(self) -> List[Handler]:
 return [
 # Sets time to morning and stops passing of time
 handlers.TimeInitialCondition(False, 23000)
]

Other Functions to Implement

SimpleEmbodimentEnvSpec requires that we implement these methods.

see API reference for use cases of these first two functions

def create_server_quit_producers(self):
 return []

def create_server_decorators(self) -> List[Handler]:
 return []

the episode can terminate when this is True
def determine_success_from_rewards(self, rewards: list) -> bool:
 return sum(rewards) >= self.reward_threshold

def is_from_folder(self, folder: str) -> bool:
 return folder == 'mlgwb'

def get_docstring(self):
 return MLGWB_DOC

Congrats! You just made your first MineRL environment. Checkout the herobraine API reference
to see many other ways to modify the world and agent.

See complete environment code here [https://github.com/minerllabs/minerl/tree/dev/examples/mlg_wb_specs.py].

Using the Environment

Now you need to solve it 🙂

Create a new Python file in the same folder.

Here is some code to get you started:

You should see a Minecaft instance open then minimize.
Then, you should see a window that shows the agent’s POV.

import gym
from mlg_wb_specs import MLGWB

In order to use the environment as a gym you need to register it with gym
abs_MLG = MLGWB()
abs_MLG.register()
env = gym.make("MLGWB-v0")

this line might take a couple minutes to run
obs = env.reset()

Renders the environment with the agent taking noops
done = False
while not done:
 env.render()
 # a dictionary of actions. Try indexing it and changing values.
 action = env.action_space.noop()
 obs, reward, done, info = env.step(action)

See complete solution code here [https://github.com/minerllabs/minerl/tree/dev/examples/mlg_wb_solution.py]
(Python file) or an interactive version here [https://github.com/trigaten/MLGPK_gym/blob/main/solution.ipynb] (Jupyter Notebook).

[image:]

 Using Minecraft Commands

Using Minecraft Commands

Introduction

MineRL provides support for sending Minecraft commands [https://minecraft.fandom.com/wiki/Commands].
In addition to opening up numerous custom environment possibilities
(Minecraft commands can be used to move players,
summon or destroy mobs and blocks, reset player
health/food, apply potions effects, and much more),
this feature can be very useful for speeding up training.

Warning

This feature is in BETA; it comes with a number of restrictions.

Only messages from the first agent are supported in the multiagent setting.

You must add the ChatAction handler to your envspec.

You can only execute one chat action per time step,

How Can MC Commands speed up training?

Consider an agent attempting the Navigate task.
After each attempt to get to the objective the Minecraft world is reset.
Resetting the world is very computationally costly and it would be better to just
reset the position, health, and food of the agent.

This could be accomplished with the following Minecraft commands:

teleport all agents to (x=0, z=0)
/tp @a 0 ~ 0

reset health of all agents
/effect @a minecraft:instant_health 1 100 true

reset food of all agents
/effect @a minecraft:saturation 1 255 true

Adding the ChatAction to your envspec

In order to send Minecraft commands, you need to add the ChatAction
handler to your environment’s envspec. See this tutorial [https://minerl.readthedocs.io/en/latest/tutorials/custom_environments.html] on how to make custom environments and envspecs.

The ChatAction allows the sending of regular Minecraft chat messages as well as Minecraft commands.
This can be accomplished by adding the ChatAction handler to your envspec:

def create_actionables(self) -> List[Handler]:
 return super().create_actionables() + [
 # enable chat
 handlers.ChatAction()
]

Abstracted Command Sending

All environments which use the ChatAction handler will support
the set_next_chat_message function. This function takes a string
and sends it as a chat message the next time the environment
is stepped:

no actions
actions = {}
env.set_next_chat_message("/gamemode @a adventure")
sets the gamemode of all players to adventure
env.step(actions)
the chat message is not executed again;
it gets cleared each time step() is called
env.step(actions)
env.set_next_chat_message("/tp @r 320 54 66")
teleports a random agent to the given coordinates
env.step(actions)

Advanced use

If for some reason you need to execute multiple commands in
the same time step, you can either spawn in a chain of
Minecraft Command Blocks or load a world from the file
with a chain of command blocks. This level of complexity
shouldn’t be needed but could be useful if you need to
execute many distinct commands and don’t want to spread them
over multiple time steps.

 General Information

General Information

The minerl package includes several environments as follows.
This page describes each of the included environments, provides usage samples,
and describes the exact action and observation space provided by each
environment!

Caution

In the MineRL Diamond Competition, many environments are provided for training.
However, competition agents will only be evaluated in the MineRLObtainDiamond-v0
(Intro track) and MineRLObtainDiamondVectorObf-v0 (Research track) environments
which have sparse rewards. For more details see MineRLObtainDiamond-v0
and MineRLObtainDiamondVectorObf-v0.

Note

All environments offer a default no-op action via env.action_space.no_op()
and a random action via env.action_space.sample().

Environment Handlers

Minecraft is an extremely complex environment which provides players
with visual, auditory, and informational observation of many complex
data types.
Furthermore, players interact with Minecraft using more than just embodied actions:
players can craft, build, destroy, smelt, enchant, manage their inventory,
and even communicate with other players via a text chat.

To provide a unified interface with which agents can obtain and perform
similar observations and actions as players, we have provided
first-class for support for this multi-modality in the environment:
the observation and action spaces of environments are
gym.spaces.Dict spaces. These observation and action
dictionaries are comprised of individual fields we call handlers.

Note

In the documentation of every environment we provide a listing
of the exact gym.space of the observations returned by and actions expected by the environment’s step function. We are slowly
building documentation for these handlers, and you can click those highlighted with blue for more information!

	Environment Handlers

	Spaces
	Enum Spaces

	Observations
	Visual Observations - pov, third-person

	Equip Observations - equipped_items

	Actions
	Camera Control - camera

	Tool Control - equip and use

MineRL Diamond Competition Intro Track Environments

MineRLTreechop-v0

[image:]
[image:]
[image:]
[image:]
In treechop, the agent must collect 64 minecraft:log. This replicates a common scenario
in Minecraft, as logs are necessary to craft a large amount of items in the game and are a
key resource in Minecraft.

The agent begins in a forest biome (near many trees) with an iron axe for cutting trees. The agent
is given +1 reward for obtaining each unit of wood, and the episode terminates once the agent
obtains 64 units.

Observation Space

Dict({
 "pov": "Box(low=0, high=255, shape=(64, 64, 3))"
})

Action Space

Dict({
 "attack": "Discrete(2)",
 "back": "Discrete(2)",
 "camera": "Box(low=-180.0, high=180.0, shape=(2,))",
 "forward": "Discrete(2)",
 "jump": "Discrete(2)",
 "left": "Discrete(2)",
 "right": "Discrete(2)",
 "sneak": "Discrete(2)",
 "sprint": "Discrete(2)"
})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLTreechop-v0") # A MineRLTreechop-v0 env

obs = env.reset()
done = False

while not done:
 # Take a no-op through the environment.
 obs, rew, done, _ = env.step(env.action_space.noop())
 # Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLTreechop-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):
 # Do something

MineRLNavigate-v0

[image:]
[image:]
[image:]
[image:]
In this task, the agent must move to a goal location denoted by a diamond block. This represents a basic primitive used in many tasks throughout Minecraft. In addition to standard observations, the agent has access to a “compass” observation, which points near the goal location, 64 meters from the start location. The goal has a small random horizontal offset from the compass location and may be slightly below surface level. On the goal location is a unique block, so the agent must find the final goal by searching based on local visual features.

The agent is given a sparse reward (+100 upon reaching the goal, at which point the episode terminates). This variant of the environment is sparse.

In this environment, the agent spawns on a random survival map.

Observation Space

Dict({
 "compass": {
 "angle": "Box(low=-180.0, high=180.0, shape=())"
 },
 "inventory": {
 "dirt": "Box(low=0, high=2304, shape=())"
 },
 "pov": "Box(low=0, high=255, shape=(64, 64, 3))"
})

Action Space

Dict({
 "attack": "Discrete(2)",
 "back": "Discrete(2)",
 "camera": "Box(low=-180.0, high=180.0, shape=(2,))",
 "forward": "Discrete(2)",
 "jump": "Discrete(2)",
 "left": "Discrete(2)",
 "place": "Enum(dirt,none)",
 "right": "Discrete(2)",
 "sneak": "Discrete(2)",
 "sprint": "Discrete(2)"
})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLNavigate-v0") # A MineRLNavigate-v0 env

obs = env.reset()
done = False

while not done:
 # Take a no-op through the environment.
 obs, rew, done, _ = env.step(env.action_space.noop())
 # Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLNavigate-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):
 # Do something

MineRLNavigateDense-v0

[image:]
[image:]
[image:]
[image:]
In this task, the agent must move to a goal location denoted by a diamond block. This represents a basic primitive used in many tasks throughout Minecraft. In addition to standard observations, the agent has access to a “compass” observation, which points near the goal location, 64 meters from the start location. The goal has a small random horizontal offset from the compass location and may be slightly below surface level. On the goal location is a unique block, so the agent must find the final goal by searching based on local visual features.

The agent is given a sparse reward (+100 upon reaching the goal, at which point the episode terminates). This variant of the environment is dense reward-shaped where the agent is given a reward every tick for how much closer (or negative reward for farther) the agent gets to the target.

In this environment, the agent spawns on a random survival map.

Observation Space

Dict({
 "compass": {
 "angle": "Box(low=-180.0, high=180.0, shape=())"
 },
 "inventory": {
 "dirt": "Box(low=0, high=2304, shape=())"
 },
 "pov": "Box(low=0, high=255, shape=(64, 64, 3))"
})

Action Space

Dict({
 "attack": "Discrete(2)",
 "back": "Discrete(2)",
 "camera": "Box(low=-180.0, high=180.0, shape=(2,))",
 "forward": "Discrete(2)",
 "jump": "Discrete(2)",
 "left": "Discrete(2)",
 "place": "Enum(dirt,none)",
 "right": "Discrete(2)",
 "sneak": "Discrete(2)",
 "sprint": "Discrete(2)"
})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLNavigateDense-v0") # A MineRLNavigateDense-v0 env

obs = env.reset()
done = False

while not done:
 # Take a no-op through the environment.
 obs, rew, done, _ = env.step(env.action_space.noop())
 # Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLNavigateDense-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):
 # Do something

MineRLNavigateExtreme-v0

[image:]
[image:]
[image:]
[image:]
In this task, the agent must move to a goal location denoted by a diamond block. This represents a basic primitive used in many tasks throughout Minecraft. In addition to standard observations, the agent has access to a “compass” observation, which points near the goal location, 64 meters from the start location. The goal has a small random horizontal offset from the compass location and may be slightly below surface level. On the goal location is a unique block, so the agent must find the final goal by searching based on local visual features.

The agent is given a sparse reward (+100 upon reaching the goal, at which point the episode terminates). This variant of the environment is sparse.

In this environment, the agent spawns in an extreme hills biome.

Observation Space

Dict({
 "compass": {
 "angle": "Box(low=-180.0, high=180.0, shape=())"
 },
 "inventory": {
 "dirt": "Box(low=0, high=2304, shape=())"
 },
 "pov": "Box(low=0, high=255, shape=(64, 64, 3))"
})

Action Space

Dict({
 "attack": "Discrete(2)",
 "back": "Discrete(2)",
 "camera": "Box(low=-180.0, high=180.0, shape=(2,))",
 "forward": "Discrete(2)",
 "jump": "Discrete(2)",
 "left": "Discrete(2)",
 "place": "Enum(dirt,none)",
 "right": "Discrete(2)",
 "sneak": "Discrete(2)",
 "sprint": "Discrete(2)"
})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLNavigateExtreme-v0") # A MineRLNavigateExtreme-v0 env

obs = env.reset()
done = False

while not done:
 # Take a no-op through the environment.
 obs, rew, done, _ = env.step(env.action_space.noop())
 # Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLNavigateExtreme-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):
 # Do something

MineRLNavigateExtremeDense-v0

[image:]
[image:]
[image:]
[image:]
In this task, the agent must move to a goal location denoted by a diamond block. This represents a basic primitive used in many tasks throughout Minecraft. In addition to standard observations, the agent has access to a “compass” observation, which points near the goal location, 64 meters from the start location. The goal has a small random horizontal offset from the compass location and may be slightly below surface level. On the goal location is a unique block, so the agent must find the final goal by searching based on local visual features.

The agent is given a sparse reward (+100 upon reaching the goal, at which point the episode terminates). This variant of the environment is dense reward-shaped where the agent is given a reward every tick for how much closer (or negative reward for farther) the agent gets to the target.

In this environment, the agent spawns in an extreme hills biome.

Observation Space

Dict({
 "compass": {
 "angle": "Box(low=-180.0, high=180.0, shape=())"
 },
 "inventory": {
 "dirt": "Box(low=0, high=2304, shape=())"
 },
 "pov": "Box(low=0, high=255, shape=(64, 64, 3))"
})

Action Space

Dict({
 "attack": "Discrete(2)",
 "back": "Discrete(2)",
 "camera": "Box(low=-180.0, high=180.0, shape=(2,))",
 "forward": "Discrete(2)",
 "jump": "Discrete(2)",
 "left": "Discrete(2)",
 "place": "Enum(dirt,none)",
 "right": "Discrete(2)",
 "sneak": "Discrete(2)",
 "sprint": "Discrete(2)"
})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLNavigateExtremeDense-v0") # A MineRLNavigateExtremeDense-v0 env

obs = env.reset()
done = False

while not done:
 # Take a no-op through the environment.
 obs, rew, done, _ = env.step(env.action_space.noop())
 # Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLNavigateExtremeDense-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):
 # Do something

MineRLObtainDiamond-v0

[image:]
[image:]
[image:]
[image:]
In this environment the agent is required to obtain a diamond.
The agent begins in a random starting location on a random survival map without any items, matching the normal starting conditions for human players in Minecraft.
The agent is given access to a selected summary of its inventory and GUI free
crafting, smelting, and inventory management actions.

During an episode the agent is rewarded only once per item the first time it obtains that item
in the requisite item hierarchy to obtaining a diamond. The rewards for each
item are given here:

<Item reward="1" type="log" />
<Item reward="2" type="planks" />
<Item reward="4" type="stick" />
<Item reward="4" type="crafting_table" />
<Item reward="8" type="wooden_pickaxe" />
<Item reward="16" type="cobblestone" />
<Item reward="32" type="furnace" />
<Item reward="32" type="stone_pickaxe" />
<Item reward="64" type="iron_ore" />
<Item reward="128" type="iron_ingot" />
<Item reward="256" type="iron_pickaxe" />
<Item reward="1024" type="diamond" />

Observation Space

Dict({
 "equipped_items": {
 "mainhand": {
 "damage": "Box(low=-1, high=1562, shape=())",
 "maxDamage": "Box(low=-1, high=1562, shape=())",
 "type": "Enum(air,iron_axe,iron_pickaxe,none,other,stone_axe,stone_pickaxe,wooden_axe,wooden_pickaxe)"
 }
 },
 "inventory": {
 "coal": "Box(low=0, high=2304, shape=())",
 "cobblestone": "Box(low=0, high=2304, shape=())",
 "crafting_table": "Box(low=0, high=2304, shape=())",
 "dirt": "Box(low=0, high=2304, shape=())",
 "furnace": "Box(low=0, high=2304, shape=())",
 "iron_axe": "Box(low=0, high=2304, shape=())",
 "iron_ingot": "Box(low=0, high=2304, shape=())",
 "iron_ore": "Box(low=0, high=2304, shape=())",
 "iron_pickaxe": "Box(low=0, high=2304, shape=())",
 "log": "Box(low=0, high=2304, shape=())",
 "planks": "Box(low=0, high=2304, shape=())",
 "stick": "Box(low=0, high=2304, shape=())",
 "stone": "Box(low=0, high=2304, shape=())",
 "stone_axe": "Box(low=0, high=2304, shape=())",
 "stone_pickaxe": "Box(low=0, high=2304, shape=())",
 "torch": "Box(low=0, high=2304, shape=())",
 "wooden_axe": "Box(low=0, high=2304, shape=())",
 "wooden_pickaxe": "Box(low=0, high=2304, shape=())"
 },
 "pov": "Box(low=0, high=255, shape=(64, 64, 3))"
})

Action Space

Dict({
 "attack": "Discrete(2)",
 "back": "Discrete(2)",
 "camera": "Box(low=-180.0, high=180.0, shape=(2,))",
 "craft": "Enum(crafting_table,none,planks,stick,torch)",
 "equip": "Enum(air,iron_axe,iron_pickaxe,none,stone_axe,stone_pickaxe,wooden_axe,wooden_pickaxe)",
 "forward": "Discrete(2)",
 "jump": "Discrete(2)",
 "left": "Discrete(2)",
 "nearbyCraft": "Enum(furnace,iron_axe,iron_pickaxe,none,stone_axe,stone_pickaxe,wooden_axe,wooden_pickaxe)",
 "nearbySmelt": "Enum(coal,iron_ingot,none)",
 "place": "Enum(cobblestone,crafting_table,dirt,furnace,none,stone,torch)",
 "right": "Discrete(2)",
 "sneak": "Discrete(2)",
 "sprint": "Discrete(2)"
})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLObtainDiamond-v0") # A MineRLObtainDiamond-v0 env

obs = env.reset()
done = False

while not done:
 # Take a no-op through the environment.
 obs, rew, done, _ = env.step(env.action_space.noop())
 # Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLObtainDiamond-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):
 # Do something

MineRLObtainDiamondDense-v0

[image:]
[image:]
[image:]
[image:]
In this environment the agent is required to obtain a diamond.
The agent begins in a random starting location on a random survival map without any items, matching the normal starting conditions for human players in Minecraft.
The agent is given access to a selected summary of its inventory and GUI free
crafting, smelting, and inventory management actions.

During an episode the agent is rewarded every time it obtains an item
in the requisite item hierarchy to obtaining a diamond. The rewards for each
item are given here:

<Item reward="1" type="log" />
<Item reward="2" type="planks" />
<Item reward="4" type="stick" />
<Item reward="4" type="crafting_table" />
<Item reward="8" type="wooden_pickaxe" />
<Item reward="16" type="cobblestone" />
<Item reward="32" type="furnace" />
<Item reward="32" type="stone_pickaxe" />
<Item reward="64" type="iron_ore" />
<Item reward="128" type="iron_ingot" />
<Item reward="256" type="iron_pickaxe" />
<Item reward="1024" type="diamond" />

Observation Space

Dict({
 "equipped_items": {
 "mainhand": {
 "damage": "Box(low=-1, high=1562, shape=())",
 "maxDamage": "Box(low=-1, high=1562, shape=())",
 "type": "Enum(air,iron_axe,iron_pickaxe,none,other,stone_axe,stone_pickaxe,wooden_axe,wooden_pickaxe)"
 }
 },
 "inventory": {
 "coal": "Box(low=0, high=2304, shape=())",
 "cobblestone": "Box(low=0, high=2304, shape=())",
 "crafting_table": "Box(low=0, high=2304, shape=())",
 "dirt": "Box(low=0, high=2304, shape=())",
 "furnace": "Box(low=0, high=2304, shape=())",
 "iron_axe": "Box(low=0, high=2304, shape=())",
 "iron_ingot": "Box(low=0, high=2304, shape=())",
 "iron_ore": "Box(low=0, high=2304, shape=())",
 "iron_pickaxe": "Box(low=0, high=2304, shape=())",
 "log": "Box(low=0, high=2304, shape=())",
 "planks": "Box(low=0, high=2304, shape=())",
 "stick": "Box(low=0, high=2304, shape=())",
 "stone": "Box(low=0, high=2304, shape=())",
 "stone_axe": "Box(low=0, high=2304, shape=())",
 "stone_pickaxe": "Box(low=0, high=2304, shape=())",
 "torch": "Box(low=0, high=2304, shape=())",
 "wooden_axe": "Box(low=0, high=2304, shape=())",
 "wooden_pickaxe": "Box(low=0, high=2304, shape=())"
 },
 "pov": "Box(low=0, high=255, shape=(64, 64, 3))"
})

Action Space

Dict({
 "attack": "Discrete(2)",
 "back": "Discrete(2)",
 "camera": "Box(low=-180.0, high=180.0, shape=(2,))",
 "craft": "Enum(crafting_table,none,planks,stick,torch)",
 "equip": "Enum(air,iron_axe,iron_pickaxe,none,stone_axe,stone_pickaxe,wooden_axe,wooden_pickaxe)",
 "forward": "Discrete(2)",
 "jump": "Discrete(2)",
 "left": "Discrete(2)",
 "nearbyCraft": "Enum(furnace,iron_axe,iron_pickaxe,none,stone_axe,stone_pickaxe,wooden_axe,wooden_pickaxe)",
 "nearbySmelt": "Enum(coal,iron_ingot,none)",
 "place": "Enum(cobblestone,crafting_table,dirt,furnace,none,stone,torch)",
 "right": "Discrete(2)",
 "sneak": "Discrete(2)",
 "sprint": "Discrete(2)"
})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLObtainDiamondDense-v0") # A MineRLObtainDiamondDense-v0 env

obs = env.reset()
done = False

while not done:
 # Take a no-op through the environment.
 obs, rew, done, _ = env.step(env.action_space.noop())
 # Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLObtainDiamondDense-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):
 # Do something

MineRLObtainIronPickaxe-v0

[image:]
[image:]
[image:]
[image:]
In this environment the agent is required to obtain an iron pickaxe. The agent begins in a random starting location, on a random survival map, without any items, matching the normal starting conditions for human players in Minecraft.
The agent is given access to a selected view of its inventory and GUI free
crafting, smelting, and inventory management actions.

During an episode the agent is rewarded only once per item the first time it obtains that item
in the requisite item hierarchy for obtaining an iron pickaxe. The reward for each
item is given here:

<Item amount="1" reward="1" type="log" />
<Item amount="1" reward="2" type="planks" />
<Item amount="1" reward="4" type="stick" />
<Item amount="1" reward="4" type="crafting_table" />
<Item amount="1" reward="8" type="wooden_pickaxe" />
<Item amount="1" reward="16" type="cobblestone" />
<Item amount="1" reward="32" type="furnace" />
<Item amount="1" reward="32" type="stone_pickaxe" />
<Item amount="1" reward="64" type="iron_ore" />
<Item amount="1" reward="128" type="iron_ingot" />
<Item amount="1" reward="256" type="iron_pickaxe" />

Observation Space

Dict({
 "equipped_items": {
 "mainhand": {
 "damage": "Box(low=-1, high=1562, shape=())",
 "maxDamage": "Box(low=-1, high=1562, shape=())",
 "type": "Enum(air,iron_axe,iron_pickaxe,none,other,stone_axe,stone_pickaxe,wooden_axe,wooden_pickaxe)"
 }
 },
 "inventory": {
 "coal": "Box(low=0, high=2304, shape=())",
 "cobblestone": "Box(low=0, high=2304, shape=())",
 "crafting_table": "Box(low=0, high=2304, shape=())",
 "dirt": "Box(low=0, high=2304, shape=())",
 "furnace": "Box(low=0, high=2304, shape=())",
 "iron_axe": "Box(low=0, high=2304, shape=())",
 "iron_ingot": "Box(low=0, high=2304, shape=())",
 "iron_ore": "Box(low=0, high=2304, shape=())",
 "iron_pickaxe": "Box(low=0, high=2304, shape=())",
 "log": "Box(low=0, high=2304, shape=())",
 "planks": "Box(low=0, high=2304, shape=())",
 "stick": "Box(low=0, high=2304, shape=())",
 "stone": "Box(low=0, high=2304, shape=())",
 "stone_axe": "Box(low=0, high=2304, shape=())",
 "stone_pickaxe": "Box(low=0, high=2304, shape=())",
 "torch": "Box(low=0, high=2304, shape=())",
 "wooden_axe": "Box(low=0, high=2304, shape=())",
 "wooden_pickaxe": "Box(low=0, high=2304, shape=())"
 },
 "pov": "Box(low=0, high=255, shape=(64, 64, 3))"
})

Action Space

Dict({
 "attack": "Discrete(2)",
 "back": "Discrete(2)",
 "camera": "Box(low=-180.0, high=180.0, shape=(2,))",
 "craft": "Enum(crafting_table,none,planks,stick,torch)",
 "equip": "Enum(air,iron_axe,iron_pickaxe,none,stone_axe,stone_pickaxe,wooden_axe,wooden_pickaxe)",
 "forward": "Discrete(2)",
 "jump": "Discrete(2)",
 "left": "Discrete(2)",
 "nearbyCraft": "Enum(furnace,iron_axe,iron_pickaxe,none,stone_axe,stone_pickaxe,wooden_axe,wooden_pickaxe)",
 "nearbySmelt": "Enum(coal,iron_ingot,none)",
 "place": "Enum(cobblestone,crafting_table,dirt,furnace,none,stone,torch)",
 "right": "Discrete(2)",
 "sneak": "Discrete(2)",
 "sprint": "Discrete(2)"
})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLObtainIronPickaxe-v0") # A MineRLObtainIronPickaxe-v0 env

obs = env.reset()
done = False

while not done:
 # Take a no-op through the environment.
 obs, rew, done, _ = env.step(env.action_space.noop())
 # Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLObtainIronPickaxe-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):
 # Do something

MineRLObtainIronPickaxeDense-v0

[image:]
[image:]
[image:]
[image:]
In this environment the agent is required to obtain an iron pickaxe. The agent begins in a random starting location, on a random survival map, without any items, matching the normal starting conditions for human players in Minecraft.
The agent is given access to a selected view of its inventory and GUI free
crafting, smelting, and inventory management actions.

During an episode the agent is rewarded every time it obtains an item
in the requisite item hierarchy for obtaining an iron pickaxe. The reward for each
item is given here:

<Item amount="1" reward="1" type="log" />
<Item amount="1" reward="2" type="planks" />
<Item amount="1" reward="4" type="stick" />
<Item amount="1" reward="4" type="crafting_table" />
<Item amount="1" reward="8" type="wooden_pickaxe" />
<Item amount="1" reward="16" type="cobblestone" />
<Item amount="1" reward="32" type="furnace" />
<Item amount="1" reward="32" type="stone_pickaxe" />
<Item amount="1" reward="64" type="iron_ore" />
<Item amount="1" reward="128" type="iron_ingot" />
<Item amount="1" reward="256" type="iron_pickaxe" />

Observation Space

Dict({
 "equipped_items": {
 "mainhand": {
 "damage": "Box(low=-1, high=1562, shape=())",
 "maxDamage": "Box(low=-1, high=1562, shape=())",
 "type": "Enum(air,iron_axe,iron_pickaxe,none,other,stone_axe,stone_pickaxe,wooden_axe,wooden_pickaxe)"
 }
 },
 "inventory": {
 "coal": "Box(low=0, high=2304, shape=())",
 "cobblestone": "Box(low=0, high=2304, shape=())",
 "crafting_table": "Box(low=0, high=2304, shape=())",
 "dirt": "Box(low=0, high=2304, shape=())",
 "furnace": "Box(low=0, high=2304, shape=())",
 "iron_axe": "Box(low=0, high=2304, shape=())",
 "iron_ingot": "Box(low=0, high=2304, shape=())",
 "iron_ore": "Box(low=0, high=2304, shape=())",
 "iron_pickaxe": "Box(low=0, high=2304, shape=())",
 "log": "Box(low=0, high=2304, shape=())",
 "planks": "Box(low=0, high=2304, shape=())",
 "stick": "Box(low=0, high=2304, shape=())",
 "stone": "Box(low=0, high=2304, shape=())",
 "stone_axe": "Box(low=0, high=2304, shape=())",
 "stone_pickaxe": "Box(low=0, high=2304, shape=())",
 "torch": "Box(low=0, high=2304, shape=())",
 "wooden_axe": "Box(low=0, high=2304, shape=())",
 "wooden_pickaxe": "Box(low=0, high=2304, shape=())"
 },
 "pov": "Box(low=0, high=255, shape=(64, 64, 3))"
})

Action Space

Dict({
 "attack": "Discrete(2)",
 "back": "Discrete(2)",
 "camera": "Box(low=-180.0, high=180.0, shape=(2,))",
 "craft": "Enum(crafting_table,none,planks,stick,torch)",
 "equip": "Enum(air,iron_axe,iron_pickaxe,none,stone_axe,stone_pickaxe,wooden_axe,wooden_pickaxe)",
 "forward": "Discrete(2)",
 "jump": "Discrete(2)",
 "left": "Discrete(2)",
 "nearbyCraft": "Enum(furnace,iron_axe,iron_pickaxe,none,stone_axe,stone_pickaxe,wooden_axe,wooden_pickaxe)",
 "nearbySmelt": "Enum(coal,iron_ingot,none)",
 "place": "Enum(cobblestone,crafting_table,dirt,furnace,none,stone,torch)",
 "right": "Discrete(2)",
 "sneak": "Discrete(2)",
 "sprint": "Discrete(2)"
})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLObtainIronPickaxeDense-v0") # A MineRLObtainIronPickaxeDense-v0 env

obs = env.reset()
done = False

while not done:
 # Take a no-op through the environment.
 obs, rew, done, _ = env.step(env.action_space.noop())
 # Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLObtainIronPickaxeDense-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):
 # Do something

MineRL Diamond Competition Research Track Environments

MineRLTreechopVectorObf-v0

[image:]
[image:]
[image:]
[image:]
In treechop, the agent must collect 64 minecraft:log. This replicates a common scenario
in Minecraft, as logs are necessary to craft a large amount of items in the game and are a
key resource in Minecraft.

The agent begins in a forest biome (near many trees) with an iron axe for cutting trees. The agent
is given +1 reward for obtaining each unit of wood, and the episode terminates once the agent
obtains 64 units.

Observation Space

Dict({
 "pov": "Box(low=0, high=255, shape=(64, 64, 3))",
 "vector": "Box(low=-1.2000000476837158, high=1.2000000476837158, shape=(64,))"
})

Action Space

Dict({
 "vector": "Box(low=-1.0499999523162842, high=1.0499999523162842, shape=(64,))"
})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLTreechopVectorObf-v0") # A MineRLTreechopVectorObf-v0 env

obs = env.reset()
done = False

while not done:
 # Take a no-op through the environment.
 obs, rew, done, _ = env.step(env.action_space.noop())
 # Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLTreechopVectorObf-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):
 # Do something

MineRLNavigateVectorObf-v0

[image:]
[image:]
[image:]
[image:]
In this task, the agent must move to a goal location denoted by a diamond block. This represents a basic primitive used in many tasks throughout Minecraft. In addition to standard observations, the agent has access to a “compass” observation, which points near the goal location, 64 meters from the start location. The goal has a small random horizontal offset from the compass location and may be slightly below surface level. On the goal location is a unique block, so the agent must find the final goal by searching based on local visual features.

The agent is given a sparse reward (+100 upon reaching the goal, at which point the episode terminates). This variant of the environment is sparse.

In this environment, the agent spawns on a random survival map.

Observation Space

Dict({
 "pov": "Box(low=0, high=255, shape=(64, 64, 3))",
 "vector": "Box(low=-1.2000000476837158, high=1.2000000476837158, shape=(64,))"
})

Action Space

Dict({
 "vector": "Box(low=-1.0499999523162842, high=1.0499999523162842, shape=(64,))"
})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLNavigateVectorObf-v0") # A MineRLNavigateVectorObf-v0 env

obs = env.reset()
done = False

while not done:
 # Take a no-op through the environment.
 obs, rew, done, _ = env.step(env.action_space.noop())
 # Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLNavigateVectorObf-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):
 # Do something

MineRLNavigateDenseVectorObf-v0

[image:]
[image:]
[image:]
[image:]
In this task, the agent must move to a goal location denoted by a diamond block. This represents a basic primitive used in many tasks throughout Minecraft. In addition to standard observations, the agent has access to a “compass” observation, which points near the goal location, 64 meters from the start location. The goal has a small random horizontal offset from the compass location and may be slightly below surface level. On the goal location is a unique block, so the agent must find the final goal by searching based on local visual features.

The agent is given a sparse reward (+100 upon reaching the goal, at which point the episode terminates). This variant of the environment is dense reward-shaped where the agent is given a reward every tick for how much closer (or negative reward for farther) the agent gets to the target.

In this environment, the agent spawns on a random survival map.

Observation Space

Dict({
 "pov": "Box(low=0, high=255, shape=(64, 64, 3))",
 "vector": "Box(low=-1.2000000476837158, high=1.2000000476837158, shape=(64,))"
})

Action Space

Dict({
 "vector": "Box(low=-1.0499999523162842, high=1.0499999523162842, shape=(64,))"
})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLNavigateDenseVectorObf-v0") # A MineRLNavigateDenseVectorObf-v0 env

obs = env.reset()
done = False

while not done:
 # Take a no-op through the environment.
 obs, rew, done, _ = env.step(env.action_space.noop())
 # Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLNavigateDenseVectorObf-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):
 # Do something

MineRLNavigateExtremeVectorObf-v0

[image:]
[image:]
[image:]
[image:]
In this task, the agent must move to a goal location denoted by a diamond block. This represents a basic primitive used in many tasks throughout Minecraft. In addition to standard observations, the agent has access to a “compass” observation, which points near the goal location, 64 meters from the start location. The goal has a small random horizontal offset from the compass location and may be slightly below surface level. On the goal location is a unique block, so the agent must find the final goal by searching based on local visual features.

The agent is given a sparse reward (+100 upon reaching the goal, at which point the episode terminates). This variant of the environment is sparse.

In this environment, the agent spawns in an extreme hills biome.

Observation Space

Dict({
 "pov": "Box(low=0, high=255, shape=(64, 64, 3))",
 "vector": "Box(low=-1.2000000476837158, high=1.2000000476837158, shape=(64,))"
})

Action Space

Dict({
 "vector": "Box(low=-1.0499999523162842, high=1.0499999523162842, shape=(64,))"
})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLNavigateExtremeVectorObf-v0") # A MineRLNavigateExtremeVectorObf-v0 env

obs = env.reset()
done = False

while not done:
 # Take a no-op through the environment.
 obs, rew, done, _ = env.step(env.action_space.noop())
 # Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLNavigateExtremeVectorObf-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):
 # Do something

MineRLNavigateExtremeDenseVectorObf-v0

[image:]
[image:]
[image:]
[image:]
In this task, the agent must move to a goal location denoted by a diamond block. This represents a basic primitive used in many tasks throughout Minecraft. In addition to standard observations, the agent has access to a “compass” observation, which points near the goal location, 64 meters from the start location. The goal has a small random horizontal offset from the compass location and may be slightly below surface level. On the goal location is a unique block, so the agent must find the final goal by searching based on local visual features.

The agent is given a sparse reward (+100 upon reaching the goal, at which point the episode terminates). This variant of the environment is dense reward-shaped where the agent is given a reward every tick for how much closer (or negative reward for farther) the agent gets to the target.

In this environment, the agent spawns in an extreme hills biome.

Observation Space

Dict({
 "pov": "Box(low=0, high=255, shape=(64, 64, 3))",
 "vector": "Box(low=-1.2000000476837158, high=1.2000000476837158, shape=(64,))"
})

Action Space

Dict({
 "vector": "Box(low=-1.0499999523162842, high=1.0499999523162842, shape=(64,))"
})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLNavigateExtremeDenseVectorObf-v0") # A MineRLNavigateExtremeDenseVectorObf-v0 env

obs = env.reset()
done = False

while not done:
 # Take a no-op through the environment.
 obs, rew, done, _ = env.step(env.action_space.noop())
 # Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLNavigateExtremeDenseVectorObf-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):
 # Do something

MineRLObtainDiamondVectorObf-v0

[image:]
[image:]
[image:]
[image:]
In this environment the agent is required to obtain a diamond.
The agent begins in a random starting location on a random survival map without any items, matching the normal starting conditions for human players in Minecraft.
The agent is given access to a selected summary of its inventory and GUI free
crafting, smelting, and inventory management actions.

During an episode the agent is rewarded only once per item the first time it obtains that item
in the requisite item hierarchy to obtaining a diamond. The rewards for each
item are given here:

<Item reward="1" type="log" />
<Item reward="2" type="planks" />
<Item reward="4" type="stick" />
<Item reward="4" type="crafting_table" />
<Item reward="8" type="wooden_pickaxe" />
<Item reward="16" type="cobblestone" />
<Item reward="32" type="furnace" />
<Item reward="32" type="stone_pickaxe" />
<Item reward="64" type="iron_ore" />
<Item reward="128" type="iron_ingot" />
<Item reward="256" type="iron_pickaxe" />
<Item reward="1024" type="diamond" />

Observation Space

Dict({
 "pov": "Box(low=0, high=255, shape=(64, 64, 3))",
 "vector": "Box(low=-1.2000000476837158, high=1.2000000476837158, shape=(64,))"
})

Action Space

Dict({
 "vector": "Box(low=-1.0499999523162842, high=1.0499999523162842, shape=(64,))"
})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLObtainDiamondVectorObf-v0") # A MineRLObtainDiamondVectorObf-v0 env

obs = env.reset()
done = False

while not done:
 # Take a no-op through the environment.
 obs, rew, done, _ = env.step(env.action_space.noop())
 # Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLObtainDiamondVectorObf-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):
 # Do something

MineRLObtainDiamondDenseVectorObf-v0

[image:]
[image:]
[image:]
[image:]
In this environment the agent is required to obtain a diamond.
The agent begins in a random starting location on a random survival map without any items, matching the normal starting conditions for human players in Minecraft.
The agent is given access to a selected summary of its inventory and GUI free
crafting, smelting, and inventory management actions.

During an episode the agent is rewarded every time it obtains an item
in the requisite item hierarchy to obtaining a diamond. The rewards for each
item are given here:

<Item reward="1" type="log" />
<Item reward="2" type="planks" />
<Item reward="4" type="stick" />
<Item reward="4" type="crafting_table" />
<Item reward="8" type="wooden_pickaxe" />
<Item reward="16" type="cobblestone" />
<Item reward="32" type="furnace" />
<Item reward="32" type="stone_pickaxe" />
<Item reward="64" type="iron_ore" />
<Item reward="128" type="iron_ingot" />
<Item reward="256" type="iron_pickaxe" />
<Item reward="1024" type="diamond" />

Observation Space

Dict({
 "pov": "Box(low=0, high=255, shape=(64, 64, 3))",
 "vector": "Box(low=-1.2000000476837158, high=1.2000000476837158, shape=(64,))"
})

Action Space

Dict({
 "vector": "Box(low=-1.0499999523162842, high=1.0499999523162842, shape=(64,))"
})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLObtainDiamondDenseVectorObf-v0") # A MineRLObtainDiamondDenseVectorObf-v0 env

obs = env.reset()
done = False

while not done:
 # Take a no-op through the environment.
 obs, rew, done, _ = env.step(env.action_space.noop())
 # Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLObtainDiamondDenseVectorObf-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):
 # Do something

MineRLObtainIronPickaxeVectorObf-v0

[image:]
[image:]
[image:]
[image:]
In this environment the agent is required to obtain an iron pickaxe. The agent begins in a random starting location, on a random survival map, without any items, matching the normal starting conditions for human players in Minecraft.
The agent is given access to a selected view of its inventory and GUI free
crafting, smelting, and inventory management actions.

During an episode the agent is rewarded only once per item the first time it obtains that item
in the requisite item hierarchy for obtaining an iron pickaxe. The reward for each
item is given here:

<Item amount="1" reward="1" type="log" />
<Item amount="1" reward="2" type="planks" />
<Item amount="1" reward="4" type="stick" />
<Item amount="1" reward="4" type="crafting_table" />
<Item amount="1" reward="8" type="wooden_pickaxe" />
<Item amount="1" reward="16" type="cobblestone" />
<Item amount="1" reward="32" type="furnace" />
<Item amount="1" reward="32" type="stone_pickaxe" />
<Item amount="1" reward="64" type="iron_ore" />
<Item amount="1" reward="128" type="iron_ingot" />
<Item amount="1" reward="256" type="iron_pickaxe" />

Observation Space

Dict({
 "pov": "Box(low=0, high=255, shape=(64, 64, 3))",
 "vector": "Box(low=-1.2000000476837158, high=1.2000000476837158, shape=(64,))"
})

Action Space

Dict({
 "vector": "Box(low=-1.0499999523162842, high=1.0499999523162842, shape=(64,))"
})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLObtainIronPickaxeVectorObf-v0") # A MineRLObtainIronPickaxeVectorObf-v0 env

obs = env.reset()
done = False

while not done:
 # Take a no-op through the environment.
 obs, rew, done, _ = env.step(env.action_space.noop())
 # Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLObtainIronPickaxeVectorObf-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):
 # Do something

MineRLObtainIronPickaxeDenseVectorObf-v0

[image:]
[image:]
[image:]
[image:]
In this environment the agent is required to obtain an iron pickaxe. The agent begins in a random starting location, on a random survival map, without any items, matching the normal starting conditions for human players in Minecraft.
The agent is given access to a selected view of its inventory and GUI free
crafting, smelting, and inventory management actions.

During an episode the agent is rewarded every time it obtains an item
in the requisite item hierarchy for obtaining an iron pickaxe. The reward for each
item is given here:

<Item amount="1" reward="1" type="log" />
<Item amount="1" reward="2" type="planks" />
<Item amount="1" reward="4" type="stick" />
<Item amount="1" reward="4" type="crafting_table" />
<Item amount="1" reward="8" type="wooden_pickaxe" />
<Item amount="1" reward="16" type="cobblestone" />
<Item amount="1" reward="32" type="furnace" />
<Item amount="1" reward="32" type="stone_pickaxe" />
<Item amount="1" reward="64" type="iron_ore" />
<Item amount="1" reward="128" type="iron_ingot" />
<Item amount="1" reward="256" type="iron_pickaxe" />

Observation Space

Dict({
 "pov": "Box(low=0, high=255, shape=(64, 64, 3))",
 "vector": "Box(low=-1.2000000476837158, high=1.2000000476837158, shape=(64,))"
})

Action Space

Dict({
 "vector": "Box(low=-1.0499999523162842, high=1.0499999523162842, shape=(64,))"
})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLObtainIronPickaxeDenseVectorObf-v0") # A MineRLObtainIronPickaxeDenseVectorObf-v0 env

obs = env.reset()
done = False

while not done:
 # Take a no-op through the environment.
 obs, rew, done, _ = env.step(env.action_space.noop())
 # Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLObtainIronPickaxeDenseVectorObf-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):
 # Do something

MineRL BASALT Competition Environments

MineRLBasaltFindCave-v0

[image:]
[image:]
[image:]
[image:]
After spawning in a plains biome, explore and find a cave. When inside a cave, throw a
snowball to end episode.

Observation Space

Dict({
 "equipped_items": {
 "mainhand": {
 "damage": "Box(low=-1, high=1562, shape=())",
 "maxDamage": "Box(low=-1, high=1562, shape=())",
 "type": "Enum(air,bucket,carrot,cobblestone,fence,fence_gate,none,other,snowball,stone_pickaxe,stone_shovel,water_bucket,wheat,wheat_seeds)"
 }
 },
 "inventory": {
 "bucket": "Box(low=0, high=2304, shape=())",
 "carrot": "Box(low=0, high=2304, shape=())",
 "cobblestone": "Box(low=0, high=2304, shape=())",
 "fence": "Box(low=0, high=2304, shape=())",
 "fence_gate": "Box(low=0, high=2304, shape=())",
 "snowball": "Box(low=0, high=2304, shape=())",
 "stone_pickaxe": "Box(low=0, high=2304, shape=())",
 "stone_shovel": "Box(low=0, high=2304, shape=())",
 "water_bucket": "Box(low=0, high=2304, shape=())",
 "wheat": "Box(low=0, high=2304, shape=())",
 "wheat_seeds": "Box(low=0, high=2304, shape=())"
 },
 "pov": "Box(low=0, high=255, shape=(64, 64, 3))"
})

Action Space

Dict({
 "attack": "Discrete(2)",
 "back": "Discrete(2)",
 "camera": "Box(low=-180.0, high=180.0, shape=(2,))",
 "equip": "Enum(air,bucket,carrot,cobblestone,fence,fence_gate,none,other,snowball,stone_pickaxe,stone_shovel,water_bucket,wheat,wheat_seeds)",
 "forward": "Discrete(2)",
 "jump": "Discrete(2)",
 "left": "Discrete(2)",
 "right": "Discrete(2)",
 "sneak": "Discrete(2)",
 "sprint": "Discrete(2)",
 "use": "Discrete(2)"
})

Starting Inventory

Dict({
 "snowball": 1
})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLBasaltFindCave-v0") # A MineRLBasaltFindCave-v0 env

obs = env.reset()
done = False

while not done:
 # Take a no-op through the environment.
 obs, rew, done, _ = env.step(env.action_space.noop())
 # Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLBasaltFindCave-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):
 # Do something

MineRLBasaltMakeWaterfall-v0

[image:]
[image:]
[image:]
[image:]
After spawning in an extreme hills biome, use your waterbucket to make an beautiful waterfall.
Then take an aesthetic “picture” of it by moving to a good location, positioning
player’s camera to have a nice view of the waterfall, and throwing a snowball. Throwing
the snowball ends the episode.

Observation Space

Dict({
 "equipped_items": {
 "mainhand": {
 "damage": "Box(low=-1, high=1562, shape=())",
 "maxDamage": "Box(low=-1, high=1562, shape=())",
 "type": "Enum(air,bucket,carrot,cobblestone,fence,fence_gate,none,other,snowball,stone_pickaxe,stone_shovel,water_bucket,wheat,wheat_seeds)"
 }
 },
 "inventory": {
 "bucket": "Box(low=0, high=2304, shape=())",
 "carrot": "Box(low=0, high=2304, shape=())",
 "cobblestone": "Box(low=0, high=2304, shape=())",
 "fence": "Box(low=0, high=2304, shape=())",
 "fence_gate": "Box(low=0, high=2304, shape=())",
 "snowball": "Box(low=0, high=2304, shape=())",
 "stone_pickaxe": "Box(low=0, high=2304, shape=())",
 "stone_shovel": "Box(low=0, high=2304, shape=())",
 "water_bucket": "Box(low=0, high=2304, shape=())",
 "wheat": "Box(low=0, high=2304, shape=())",
 "wheat_seeds": "Box(low=0, high=2304, shape=())"
 },
 "pov": "Box(low=0, high=255, shape=(64, 64, 3))"
})

Action Space

Dict({
 "attack": "Discrete(2)",
 "back": "Discrete(2)",
 "camera": "Box(low=-180.0, high=180.0, shape=(2,))",
 "equip": "Enum(air,bucket,carrot,cobblestone,fence,fence_gate,none,other,snowball,stone_pickaxe,stone_shovel,water_bucket,wheat,wheat_seeds)",
 "forward": "Discrete(2)",
 "jump": "Discrete(2)",
 "left": "Discrete(2)",
 "right": "Discrete(2)",
 "sneak": "Discrete(2)",
 "sprint": "Discrete(2)",
 "use": "Discrete(2)"
})

Starting Inventory

Dict({
 "cobblestone": 20,
 "snowball": 1,
 "stone_pickaxe": 1,
 "stone_shovel": 1,
 "water_bucket": 1
})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLBasaltMakeWaterfall-v0") # A MineRLBasaltMakeWaterfall-v0 env

obs = env.reset()
done = False

while not done:
 # Take a no-op through the environment.
 obs, rew, done, _ = env.step(env.action_space.noop())
 # Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLBasaltMakeWaterfall-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):
 # Do something

MineRLBasaltCreateVillageAnimalPen-v0

[image:]
[image:]
[image:]
[image:]
After spawning in a plains village, surround two or more animals of the same type in a
fenced area (a pen), constructed near the house.
You can’t have more than one type of animal in your enclosed area.
Allowed animals are chickens, sheep, cows, and pigs.

Do not harm villagers or existing village structures in the process.

Throw a snowball to end the episode.

Observation Space

Dict({
 "equipped_items": {
 "mainhand": {
 "damage": "Box(low=-1, high=1562, shape=())",
 "maxDamage": "Box(low=-1, high=1562, shape=())",
 "type": "Enum(air,bucket,carrot,cobblestone,fence,fence_gate,none,other,snowball,stone_pickaxe,stone_shovel,water_bucket,wheat,wheat_seeds)"
 }
 },
 "inventory": {
 "bucket": "Box(low=0, high=2304, shape=())",
 "carrot": "Box(low=0, high=2304, shape=())",
 "cobblestone": "Box(low=0, high=2304, shape=())",
 "fence": "Box(low=0, high=2304, shape=())",
 "fence_gate": "Box(low=0, high=2304, shape=())",
 "snowball": "Box(low=0, high=2304, shape=())",
 "stone_pickaxe": "Box(low=0, high=2304, shape=())",
 "stone_shovel": "Box(low=0, high=2304, shape=())",
 "water_bucket": "Box(low=0, high=2304, shape=())",
 "wheat": "Box(low=0, high=2304, shape=())",
 "wheat_seeds": "Box(low=0, high=2304, shape=())"
 },
 "pov": "Box(low=0, high=255, shape=(64, 64, 3))"
})

Action Space

Dict({
 "attack": "Discrete(2)",
 "back": "Discrete(2)",
 "camera": "Box(low=-180.0, high=180.0, shape=(2,))",
 "equip": "Enum(air,bucket,carrot,cobblestone,fence,fence_gate,none,other,snowball,stone_pickaxe,stone_shovel,water_bucket,wheat,wheat_seeds)",
 "forward": "Discrete(2)",
 "jump": "Discrete(2)",
 "left": "Discrete(2)",
 "right": "Discrete(2)",
 "sneak": "Discrete(2)",
 "sprint": "Discrete(2)",
 "use": "Discrete(2)"
})

Starting Inventory

Dict({
 "carrot": 1,
 "fence": 64,
 "fence_gate": 64,
 "snowball": 1,
 "wheat": 1,
 "wheat_seeds": 1
})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLBasaltCreateVillageAnimalPen-v0") # A MineRLBasaltCreateVillageAnimalPen-v0 env

obs = env.reset()
done = False

while not done:
 # Take a no-op through the environment.
 obs, rew, done, _ = env.step(env.action_space.noop())
 # Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLBasaltCreateVillageAnimalPen-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):
 # Do something

MineRLBasaltBuildVillageHouse-v0

[image:]
[image:]
[image:]
[image:]
Build a house in the style of the village without damaging the village. Give a tour of
the house and then throw a snowball to end the episode.

Note

In the observation and action spaces, the following (internal Minecraft) item IDs can be
interpreted as follows:

	log#0 is oak logs.

	log#1 is spruce logs.

	log2#0 is acacia logs.

	planks#0 is oak planks.

	planks#1 is spruce planks.

	planks#4 is acacia planks.

	sandstone#0 is cracked sandstone.

	sandstone#2 is smooth sandstone.

Tip

You can find detailed information on which materials are used in each biome-specific
village (plains, savannah, taiga, desert) here:
https://minecraft.fandom.com/wiki/Village/Structure_(old)/Blueprints#Village_generation

Observation Space

Dict({
 "equipped_items": {
 "mainhand": {
 "damage": "Box(low=-1, high=1562, shape=())",
 "maxDamage": "Box(low=-1, high=1562, shape=())",
 "type": "Enum(acacia_door,acacia_fence,cactus,cobblestone,dirt,fence,flower_pot,glass,ladder,log#0,log#1,log2#0,none,other,planks#0,planks#1,planks#4,red_flower,sand,sandstone#0,sandstone#2,sandstone_stairs,snowball,spruce_door,spruce_fence,stone_axe,stone_pickaxe,stone_stairs,torch,wooden_door,wooden_pressure_plate)"
 }
 },
 "inventory": {
 "acacia_door": "Box(low=0, high=2304, shape=())",
 "acacia_fence": "Box(low=0, high=2304, shape=())",
 "cactus": "Box(low=0, high=2304, shape=())",
 "cobblestone": "Box(low=0, high=2304, shape=())",
 "dirt": "Box(low=0, high=2304, shape=())",
 "fence": "Box(low=0, high=2304, shape=())",
 "flower_pot": "Box(low=0, high=2304, shape=())",
 "glass": "Box(low=0, high=2304, shape=())",
 "ladder": "Box(low=0, high=2304, shape=())",
 "log#0": "Box(low=0, high=2304, shape=())",
 "log#1": "Box(low=0, high=2304, shape=())",
 "log2#0": "Box(low=0, high=2304, shape=())",
 "planks#0": "Box(low=0, high=2304, shape=())",
 "planks#1": "Box(low=0, high=2304, shape=())",
 "planks#4": "Box(low=0, high=2304, shape=())",
 "red_flower": "Box(low=0, high=2304, shape=())",
 "sand": "Box(low=0, high=2304, shape=())",
 "sandstone#0": "Box(low=0, high=2304, shape=())",
 "sandstone#2": "Box(low=0, high=2304, shape=())",
 "sandstone_stairs": "Box(low=0, high=2304, shape=())",
 "snowball": "Box(low=0, high=2304, shape=())",
 "spruce_door": "Box(low=0, high=2304, shape=())",
 "spruce_fence": "Box(low=0, high=2304, shape=())",
 "stone_axe": "Box(low=0, high=2304, shape=())",
 "stone_pickaxe": "Box(low=0, high=2304, shape=())",
 "stone_stairs": "Box(low=0, high=2304, shape=())",
 "torch": "Box(low=0, high=2304, shape=())",
 "wooden_door": "Box(low=0, high=2304, shape=())",
 "wooden_pressure_plate": "Box(low=0, high=2304, shape=())"
 },
 "pov": "Box(low=0, high=255, shape=(64, 64, 3))"
})

Action Space

Dict({
 "attack": "Discrete(2)",
 "back": "Discrete(2)",
 "camera": "Box(low=-180.0, high=180.0, shape=(2,))",
 "equip": "Enum(acacia_door,acacia_fence,cactus,cobblestone,dirt,fence,flower_pot,glass,ladder,log#0,log#1,log2#0,none,other,planks#0,planks#1,planks#4,red_flower,sand,sandstone#0,sandstone#2,sandstone_stairs,snowball,spruce_door,spruce_fence,stone_axe,stone_pickaxe,stone_stairs,torch,wooden_door,wooden_pressure_plate)",
 "forward": "Discrete(2)",
 "jump": "Discrete(2)",
 "left": "Discrete(2)",
 "right": "Discrete(2)",
 "sneak": "Discrete(2)",
 "sprint": "Discrete(2)",
 "use": "Discrete(2)"
})

Starting Inventory

Dict({
 "acacia_door": 64,
 "acacia_fence": 64,
 "cactus": 3,
 "cobblestone": 64,
 "dirt": 64,
 "fence": 64,
 "flower_pot": 3,
 "glass": 64,
 "ladder": 64,
 "log#0": 64,
 "log#1": 64,
 "log2#0": 64,
 "planks#0": 64,
 "planks#1": 64,
 "planks#4": 64,
 "red_flower": 3,
 "sand": 64,
 "sandstone#0": 64,
 "sandstone#2": 64,
 "sandstone_stairs": 64,
 "snowball": 1,
 "spruce_door": 64,
 "spruce_fence": 64,
 "stone_axe": 1,
 "stone_pickaxe": 1,
 "stone_stairs": 64,
 "torch": 64,
 "wooden_door": 64,
 "wooden_pressure_plate": 64
})

Usage

import gym
import minerl

Run a random agent through the environment
env = gym.make("MineRLBasaltBuildVillageHouse-v0") # A MineRLBasaltBuildVillageHouse-v0 env

obs = env.reset()
done = False

while not done:
 # Take a no-op through the environment.
 obs, rew, done, _ = env.step(env.action_space.noop())
 # Do something

######################################

Sample some data from the dataset!
data = minerl.data.make("MineRLBasaltBuildVillageHouse-v0")

Iterate through a single epoch using sequences of at most 32 steps
for obs, rew, done, act in data.batch_iter(num_epochs=1, batch_size=32):
 # Do something

 Environment Handlers

Environment Handlers

Minecraft is an extremely complex environment which provides players
with visual, auditory, and informational observation of many complex
data types.
Furthermore, players interact with Minecraft using more than just embodied actions:
players can craft, build, destroy, smelt, enchant, manage their inventory,
and even communicate with other players via a text chat.

To provide a unified interface with which agents can obtain and perform
similar observations and actions as players, we have provided
first-class for support for this multi-modality in the environment:
the observation and action spaces of environments are
gym.spaces.Dict spaces. These observation and action
dictionaries are comprised of individual fields we call handlers.

Note

In the documentation of every environment we provide a listing
of the exact gym.space of the observations returned by and actions expected by the environment’s step function. We are slowly
building documentation for these handlers, and you can click those highlighted with blue for more information!

	Environment Handlers

	Spaces
	Enum Spaces

	Observations
	Visual Observations - pov, third-person

	Equip Observations - equipped_items

	Actions
	Camera Control - camera

	Tool Control - equip and use

Spaces

Enum Spaces

Some observation and action spaces are Enum types. Examples include
the equip observation
and
the equip action.

Observation and action spaces that are Enum are encoded as strings by default (e.g. “none”,
“log”, and “sandstone#2”) when they are returned from env.step() and env.reset(), or
yielded from minerl.data.DataPipeline.batch_iter().

When building an action to pass into env.step(act), the Enum component of the action dict can
be encoded as either a string or an integer.

Tip

The Enum integer value that corresponds to each Enum string value can be accessed via
Enum.values_map[string_value]. For example, to get the integer value corresponding to the
equip action “dirt” in MineRLObtainDiamond or MineRLBasaltBuildVillageHouse, you can
call env.action_space.spaces["equip"].values_map["dirt"].

Observations

Visual Observations - pov, third-person

	
pov : Box(width, height, nchannels)

	An RGB image observation of
the agent’s first-person perspective.

	Type

	np.uint8

	
third-person : Box(width, height, nchannels)

	An RGB image observation of the agent’s third-person perspective.

Warning

This observation is not yet supported by any environment.

	Type

	np.uint8

	
compass-observation : Box(1)

	The current position of the minecraft:compass object from 0 (behind agent left) to
0.5 in front of agent to 1 (behind agent right)

Note

This observation uses the default Minecraft game logic which includes compass needle momentum.
As such it may change even when the agent has stoped moving!

Equip Observations - equipped_items

	
equipped_items.mainhand.type : Enum('none', 'air', ..., 'other'))

	This observation is an Enum type. See Enum Spaces for more information.

The type of the item that the player has equipped in the mainhand slot. If the mainhand slot
is empty then the value is ‘air’. If the mainhand slot contains an item not inside this
observation space, then the value is ‘other’.

	Type

	np.int64

	Shape

	[1]

Actions

Camera Control - camera

	
camera : Box(2) [delta_pitch, delta_yaw]

	This action changes the orientation of the agent’s head by the corresponding number of degrees.
When the pov observation is available, the
camera changes its orientation pitch by the first component
and its yaw by the second component. Both delta_pitch and delta_yaw are limited to [-180, 180]
inclusive

	Type

	np.float32

	Shape

	[2]

	
attack : Discrete(1) [attack]

	This action causes the agent to attack.

	Type

	np.float32

	Shape

	[1]

Tool Control - equip and use

	
equip : Enum('none', 'air', ..., 'other'))

	This is action is an Enum type. See Enum Spaces for more information.

This action equips the first instance of the specified item from the agents inventory to the main hand if the
specified item is present, otherwise does nothing.
air matches any empty slot in an agent’s inventory and functions as an un-equip, or equip-nothing action.

	Type

	np.int64

	Shape

	[1]

Note

equip 'none' and equip 'other' are both no-op actions. In other words, they leave
the currently equipped item unchanged. However, in the MineRL dataset, other takes on a
special meaning. other is the wildcard equip action that is recorded in the dataset
whenever a player equipped an item that wasn’t included in this action space’s Enum.

Warning

env.step(act) typically will not process the equip action for two ticks (i.e., you will not
see the observation value equipped_items change until two more calls to env.step.)

This is due to a limitation with the current version of Malmo, our Minecraft backend.

	
use : Discrete(1) [use]

	This action is equivalent to right-clicking in Minecraft. It causes the agent to use the
item it is holding in the mainhand slot, or to open doors or gates when it is facing an applicable Minecraft
structure.

	Type

	np.int64

	Shape

	[1]

 Performance tips

Performance tips

Slowdown in obfuscated environments

Obfuscated environments, like MineRLObtainDiamondVectorObf-v0 make extensive use of np.dot function, which by default
is parallelized over multiple threads. Since the vectors/matrices are small, the overhead
from this outweights benefits, and the environment appears much slower than it really is.

To speed up obfuscated environments, try setting environment variable OMP_NUM_THREADS=1 to restrict
Numpy to only use one thread.

Faster alternative to xvfb

Running MineRL on xvfb will slow it down by 2-3x as the rendering is done on CPU, not on the GPU.
A potential alternative is to use a combination of VirtualGL and virtual displays from nvidia tools.

Note that this may interfere with your display/driver setup, and may not work on cloud VMs
(nvidia-xconfig is not available).

Following commands outline the procedure. You may need to adapt it to suit your needs.
After these commands, run export DISPLAY=:0 and you should be ready to run MineRL. The Minecraft window
will be rendered in a virtual display.

All credits go to Tencent researchers who kindly shared this piece of information!

sudo apt install lightdm libglu1-mesa mesa-utils xvfb xinit xserver-xorg-video-dummy

sudo nvidia-xconfig -a --allow-empty-initial-configuration --virtual=1920x1200 --busid PCI:0:8:0
cd /tmp
wget https://nchc.dl.sourceforge.net/project/virtualgl/2.6.3/virtualgl_2.6.3_amd64.deb
sudo dpkg -i virtualgl_2.6.3_amd64.deb

sudo service lightdm stop
sudo vglserver_config
sudo service lightdm start

 Links to papers and projects

Links to papers and projects

Here you can find useful links to the presentations, code and papers of the finalists in previous MineRL competitions, as well as other publications and projects that use MineRL.

To see all papers that cite MineRL, check Google Scholar [https://scholar.google.com/scholar?cites=13696808614504218715&as_sdt=2005&sciodt=0,5&hl=en]. You can also create alerts there to get notified whenever a new citation appears.

If you want to add your paper/project here, do not hesitate to create a pull request in the main repository [https://github.com/minerllabs/minerl]!

Presentations

	MineRL 2019 - Finalists presentations at NeurIPS 2019 [https://slideslive.at/38922880/the-minerl-competition]

	MineRL 2019 - 1st place winners presentation, longer one (slides in English, talk in Russian) [https://www.youtube.com/watch?v=7J2HMUimj1A]

	MineRL 2020 - Round 1 finalists presentations at NeurIPS 2020 [https://crossminds.ai/video/introduction-and-results-of-the-2020-minerl-competition-606fdfb5f43a7f2f827bfc23]

	MineRL 2020 - Round 2 finalists presentations at Microsoft AI and Gaming Research Summit 2021 [https://www.youtube.com/watch?v=rVvfJ1u5zDU]

MineRL papers

	MineRL: A Large-Scale Dataset of Minecraft Demonstrations [https://arxiv.org/abs/1907.13440]

	The MineRL 2019 Competition on Sample Efficient Reinforcement Learning using Human Priors [https://arxiv.org/abs/1904.10079]

	Retrospective Analysis of the 2019 MineRL Competition on Sample Efficient Reinforcement Learning [https://arxiv.org/abs/2003.05012]

	The MineRL 2020 Competition on Sample Efficient Reinforcement Learning using Human Priors [https://arxiv.org/abs/2101.11071]

	Towards robust and domain agnostic reinforcement learning competitions: MineRL 2020 [https://arxiv.org/abs/2106.03748]

2019 competitor code/papers

	1st place: paper [https://arxiv.org/abs/1912.08664].

	2nd place: paper [https://arxiv.org/abs/2007.02701], code [https://github.com/amiranas/minerl_imitation_learning].

	3rd place: paper [https://arxiv.org/abs/2003.06066], code [https://github.com/metataro/minerl_agent].

	4th place: code [https://github.com/kaixin96/MineRL_submission].

	5th place: paper [https://arxiv.org/abs/2005.03374], code [https://github.com/Miffyli/minecraft-bc].

2020 competitor code/papers

	1st place: paper [https://arxiv.org/abs/2111.08857].

	2nd place: code [https://github.com/MichalOp/MineRL2020].

	3rd place: code [https://github.com/Miffyli/minecraft-bc-2020].

Other papers that use the MineRL environment

	PiCoEDL: Discovery and Learning of Minecraft Navigation Goals from Pixels and Coordinates [https://imatge.upc.edu/web/sites/default/files/pub/cNieto.pdf] (CVPR Embodied AI Workshop, 2021)

	Universal Value Iteration Networks: When Spatially-Invariant Is Not Universal [https://ojs.aaai.org/index.php/AAAI/article/view/6157] (AAAI, 2020)

	Multi-task curriculum learning in a complex, visual, hard-exploration domain: Minecraft [https://arxiv.org/abs/2106.14876]

	Follow up paper from the #1 team in 2019 (obtains diamond): paper [https://arxiv.org/abs/2006.09939], code [https://github.com/cog-isa/forger].

	Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution (obtains diamond): paper [https://arxiv.org/abs/2009.14108], code [https://github.com/ml-jku/align-rudder].

Other

	Data analysis for vector obfuscation/kmeans [https://github.com/GJuceviciute/MineRL-2020]

	Malmo and MineRL tutorial [https://tsmatz.wordpress.com/2020/07/09/minerl-and-malmo-reinforcement-learning-in-minecraft/]

 Windows FAQ

Windows FAQ

This note serves as a collection of fixes for errors which
may occur on the Windows platform.

The The system cannot find the path specified error (installing)

If during installation you get errors regarding missing files or unspecified paths,
followed by a long path string, you might be limited by the MAX_PATH setting on
windows. Try removing this limitation with these instructions [https://lifehacker.com/windows-10-allows-file-names-longer-than-260-characters-1785201032].

The freeze_support error (multiprocessing)

RuntimeError:
 An attempt has been made to start a new process before the
 current process has finished its bootstrapping phase.

 This probably means that you are not using fork to start your
 child processes and you have forgotten to use the proper idiom
 in the main module:

 if __name__ == '__main__':
 freeze_support()
 ...

 The "freeze_support()" line can be omitted if the program
 is not going to be frozen to produce an executable.

The implementation of multiprocessing is different on Windows, which
uses spawn instead of fork. So we have to wrap the code with an
if-clause to protect the code from executing multiple times. Refactor
your code into the following structure.

import minerl
import gym

def main()
 # do your main minerl code
 env = gym.make('MineRLTreechop-v0')

if __name__ == '__main__':
 main()

 minerl.env

minerl.env

The minerl.env package provides an optimized python
software layer over MineRLEnv, a fork of the popular Minecraft
simulator Malmo which enables synchronous, stable, and
fast samples from the Minecraft environment.

MineRLEnv

	
class minerl.env._singleagent._SingleAgentEnv(*args, **kwargs)

	Bases: _MultiAgentEnv

The single agent version of the MineRLEnv.

THIS CLASS SHOULD NOT BE INSTANTIATED DIRECTLY
USE ENV SPEC.

	
render(mode='human')

	Renders the environment.

The set of supported modes varies per environment. (And some
environments do not support rendering at all.) By convention,
if mode is:

	human: render to the current display or terminal and
return nothing. Usually for human consumption.

	rgb_array: Return an numpy.ndarray with shape (x, y, 3),
representing RGB values for an x-by-y pixel image, suitable
for turning into a video.

	ansi: Return a string (str) or StringIO.StringIO containing a
terminal-style text representation. The text can include newlines
and ANSI escape sequences (e.g. for colors).

Note

	Make sure that your class’s metadata ‘render.modes’ key includes
	the list of supported modes. It’s recommended to call super()
in implementations to use the functionality of this method.

	Parameters

	mode (str) – the mode to render with

Example:

	class MyEnv(Env):
	metadata = {‘render.modes’: [‘human’, ‘rgb_array’]}

	def render(self, mode=’human’):
	
	if mode == ‘rgb_array’:
	return np.array(…) # return RGB frame suitable for video

	elif mode == ‘human’:
	… # pop up a window and render

	else:
	super(MyEnv, self).render(mode=mode) # just raise an exception

	
reset() → Dict[str, Any]

	Reset the environment.

Sets-up the Env from its specification (called everytime the env is reset.)

	Returns

	The first observation of the environment.

	
step(single_agent_action: Dict[str, Any]) → Tuple[Dict[str, Any], float, bool, Dict[str, Any]]

	Run one timestep of the environment’s dynamics. When end of
episode is reached, you are responsible for calling reset()
to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

	Parameters

	action (object) – an action provided by the agent

	Returns

	agent’s observation of the current environment
reward (float) : amount of reward returned after previous action
done (bool): whether the episode has ended, in which case further step() calls will return undefined results
info (dict): contains auxiliary diagnostic information (helpful for debugging, and sometimes learning)

	Return type

	observation (object)

InstanceManager

	
class minerl.env.malmo.CustomAsyncRemoteMethod(proxy, name, max_retries)

	Bases: _AsyncRemoteMethod

	
class minerl.env.malmo.InstanceManager

	Bases: object

The Minecraft instance manager library. The instance manager can be used to allocate and safely terminate
existing Malmo instances for training agents.

Note: This object never needs to be explicitly invoked by the user of the MineRL library as the creation of
one of the several MineRL environments will automatically query the InstanceManager to create a new instance.

Note: In future versions of MineRL the instance manager will become its own daemon process which provides
instance allocation capability using remote procedure calls.

	
DEFAULT_IP = 'localhost'

	

	
KEEP_ALIVE_PYRO_FREQUENCY = 5

	

	
MAXINSTANCES = None

	

	
MINECRAFT_DIR = '/home/docs/checkouts/readthedocs.org/user_builds/minerl/envs/v0.4.4/lib/python3.7/site-packages/minerl/env/../Malmo/Minecraft'

	

	
REMOTE = False

	

	
SCHEMAS_DIR = '/home/docs/checkouts/readthedocs.org/user_builds/minerl/envs/v0.4.4/lib/python3.7/site-packages/minerl/env/../Malmo/Schemas'

	

	
STATUS_DIR = '/home/docs/checkouts/readthedocs.org/user_builds/minerl/envs/v0.4.4/lib/python3.7/site-packages/sphinx/performance'

	

	
X11_DIR = '/tmp/.X11-unix'

	

	
classmethod add_existing_instance(port)

	

	
classmethod add_keep_alive(_pid, _callback)

	

	
classmethod allocate_pool(num)

	

	
classmethod configure_malmo_base_port(malmo_base_port)

	Configure the lowest or base port for Malmo

	
classmethod get_instance(pid, instance_id=None)

	Gets an instance from the instance manager. This method is a context manager
and therefore when the context is entered the method yields a InstanceManager.Instance
object which contains the allocated port and host for the given instance that was created.

	Yields

	The allocated InstanceManager.Instance object.

	Raises

	
	RuntimeError – No available instances or the maximum number of allocated instances reached.

	RuntimeError – No available instances and automatic allocation of instances is off.

	
headless = False

	

	
classmethod is_remote()

	

	
managed = True

	

	
ninstances = 0

	

	
classmethod set_valid_jdwp_port_for_instance(instance) → None

	Find a valid port for JDWP (Java Debug Wire Protocol), so that the instance can be debugged
with an attached debugger. The port is set in the instance, so that other instances can
check whether the port is reserved.
:param instance: Instance to find and port for, and where we will set the jdwp port.

	
classmethod shutdown()

	

	
class minerl.env.malmo.MinecraftInstance(port=None, existing=False, status_dir=None, seed=None, instance_id=None)

	Bases: object

A subprocess wrapper which maintains a reference to a minecraft subprocess
and also allows for stable closing and launching of such subprocesses
across different platforms.

The Minecraft instance class works by launching two subprocesses:
the Malmo subprocess, and a watcher subprocess with access to
the process IDs of both the parent process and the Malmo subprocess.
If the parent process dies, it will kill the subprocess, and then itself.

This scheme has a single failure point of the process dying before the watcher process is launched.

	
MAX_PIPE_LENGTH = 500

	

	
property actor_name

	

	
property client_socket

	

	
client_socket_close()

	

	
client_socket_recv_message()

	

	
client_socket_send_message(msg)

	

	
client_socket_shutdown(param)

	

	
close()

	Closes the object.

	
create_multiagent_instance_socket(socktime)

	

	
get_output()

	

	
property had_to_clean

	

	
has_client_socket()

	

	
property host

	

	
property jdwp_port

	JDWP (Java Debug Wire Protocol) port, if any, so the instance can be debugged with an
attached debugger.

	
kill()

	Kills the process (if it has been launched.)

	
launch(daemonize=False, replaceable=True)

	

	
property port

	

	
release_lock()

	

	
property status_dir

	

	
class minerl.env.malmo.SeedType(value)

	Bases: IntEnum

The seed type for an instance manager.

	Values:
	0 - NONE: No seeding whatsoever.
1 - CONSTANT: All envrionments have the same seed (the one specified

to the instance manager) (or alist of seeds , separated)

	2 - GENERATED: All environments have different seeds generated from a single
	random generator with the seed specified to the InstanceManager.

	3 - SPECIFIED: Each instance is given a list of seeds. Specify this like
	1,2,3,4;848,432,643;888,888,888
Each instance’s seed list is separated by ; and each seed is separated by ,

	
CONSTANT = 1

	

	
GENERATED = 2

	

	
NONE = 0

	

	
SPECIFIED = 3

	

	
classmethod get_index(type)

	

	
minerl.env.malmo.launch_instance_manager()

	Defines the entry point for the remote procedure call server.

	
minerl.env.malmo.launch_queue_logger_thread(output_producer, should_end)

	

 minerl.data

minerl.data

The minerl.data package provides a unified interface for
sampling data from the MineRL-v0 Dataset. Data is accessed by
making a dataset from one of the minerl environments and iterating
over it using one of the iterators provided by the minerl.data.DataPipeline

The following is a description of the various methods included within the package
as well as some basic usage examples. To see more detailed
descriptions and tutorials [http://minerl.io/docs/tutorials/first_agent.html] on how to use the data API, please
take a look at our numerous getting started manuals [http://minerl.io/docs/tutorials/first_agent.html].

MineRLv0

	
class minerl.data.DataPipeline(data_directory: <module 'posixpath' from '/home/docs/checkouts/readthedocs.org/user_builds/minerl/envs/v0.4.4/lib/python3.7/posixpath.py'>, environment: str, num_workers: int, worker_batch_size: int, min_size_to_dequeue: int, random_seed=42)

	Bases: object

Creates a data pipeline object used to itterate through the MineRL-v0 dataset

	
property action_space

	action space of current MineRL environment

	Type

	Returns

	
batch_iter(batch_size: int, seq_len: int, num_epochs: int = - 1, preload_buffer_size: int = 2, seed: Optional[int] = None)

	Returns batches of sequences length SEQ_LEN of the data of size BATCH_SIZE.
The iterator produces batches sequentially. If an element of a batch reaches the
end of its episode, it will be appended with a new episode.

If you wish to obtain metadata of the episodes, consider using load_data instead.

	Parameters

	
	batch_size (int) – The batch size.

	seq_len (int) – The size of sequences to produce.

	num_epochs (int, optional) – The number of epochs to iterate over the data. Defaults to -1.

	preload_buffer_size (int, optional) – Increase to IMPROVE PERFORMANCE. The data iterator
uses a queue to prevent blocking, the queue size is the number of trajectories to
load into the buffer. Adjust based on memory constraints. Defaults to 32.

	seed (int, optional) – [int]. NOT IMPLEMENTED Defaults to None.

	Returns

	A generator that yields (sarsd) batches

	Return type

	Generator

	
get_trajectory_names()

	Gets all the trajectory names

	Returns

	[description]

	Return type

	A list of experiment names

	
load_data(stream_name: str, skip_interval=0, include_metadata=False, include_monitor_data=False)

	Iterates over an individual trajectory named stream_name.

	Parameters

	
	stream_name (str) – The stream name desired to be iterated through.

	skip_interval (int, optional) – How many sices should be skipped.. Defaults to 0.

	include_metadata (bool, optional) – Whether or not meta data about the loaded trajectory should be included.. Defaults to False.

	include_monitor_data (bool, optional) – Whether to include all of the monitor data from the environment. Defaults to False.

	Yields

	A tuple of (state, player_action, reward_from_action, next_state, is_next_state_terminal).
These are tuples are yielded in order of the episode.

	
property observation_space

	observation space of current MineRL environment

	Type

	Returns

	
static read_frame(cap)

	

	
sarsd_iter(num_epochs=- 1, max_sequence_len=32, queue_size=None, seed=None, include_metadata=False)

	Returns a generator for iterating through (state, action, reward, next_state, is_terminal)
tuples in the dataset.
Loads num_workers files at once as defined in minerl.data.make() and return up to
max_sequence_len consecutive samples wrapped in a dict observation space

	Parameters

	
	num_epochs (int, optional) – number of epochs to iterate over or -1
to loop forever. Defaults to -1

	max_sequence_len (int, optional) – maximum number of consecutive samples - may be less. Defaults to 32

	seed (int, optional) – seed for random directory walk - note, specifying seed as well as a finite num_epochs
will cause the ordering of examples to be the same after every call to seq_iter

	queue_size (int, optional) – maximum number of elements to buffer at a time, each worker may hold an
additional item while waiting to enqueue. Defaults to 16*self.number_of_workers or 2*
self.number_of_workers if max_sequence_len == -1

	include_metadata (bool, optional) – adds an additional member to the tuple containing metadata about the
stream the data was loaded from. Defaults to False

	Yields

	A tuple of (state, player_action, reward_from_action, next_state, is_next_state_terminal, (metadata)).
Each element is in the format of the environment action/state/reward space and contains as many
samples are requested.

	
seq_iter(num_epochs=- 1, max_sequence_len=32, queue_size=None, seed=None, include_metadata=False)

	DEPRECATED METHOD FOR SAMPLING DATA FROM THE MINERL DATASET.

This function is now DataPipeline.batch_iter()

	
property spec: EnvSpec

	

	
minerl.data.download(directory: Optional[str] = None, environment: Optional[str] = None, competition: Optional[str] = None, resolution: str = 'low', texture_pack: int = 0, update_environment_variables: bool = True, disable_cache: bool = False) → None

	Low-level interface for downloading MineRL dataset.

Using the python -m minerl.data.download CLI script is preferred because it performs
more input validation and hides internal-use arguments.

Run this command with environment=None and competition=None to download a minimal
dataset with 2 demonstrations from each environment.
Provide the environment or competition arguments to download a full dataset for
a particular environment or competition.

	Parameters

	
	directory – Destination folder for downloading MineRL datasets. If None, then use
the MINERL_DATA_ROOT environment variable, or error if this environment
variable is not set.

	environment – The name of a MineRL environment or None. If this argument is the
name of a MineRL environment and competition is None, then this function
downloads the full dataset for the specifies MineRL environment.

If both environment=None and competition=None, then this function
downloads a minimal dataset.

	competition – The name of a MineRL competition (“diamond” or “basalt”) or None. If
this argument is the name of a MineRL environment and competition is None,
then this function downloads the full dataset for the specified MineRL
competition.

If both environment=None and competition=None, then this function
downloads a minimal dataset.

	resolution – For internal use only. One of [‘low’, ‘high’] corresponding to video
resolutions of [64x64,1024x1024] respectively (note: high resolution is not currently
supported).

	texture_pack – For internal use only. 0: default Minecraft texture
pack, 1: flat semi-realistic texture pack.

	update_environment_variables – For internal use only. If True, then export of
MINERL_DATA_ROOT environment variable (note: for some os this is only for the
current shell).

	disable_cache – If False (default), then the tar download and other temporary
download files are saved inside directory.

If disable_cache is False on
a future call to this function and temporary download files are detected, then
the download is resumed from previous download progress. If disable_cache is
False on a future call to this function and the completed tar file is
detected, then the download is skipped entirely and we immediately extract the tar
to directory.

	
minerl.data.make(environment=None, data_dir=None, num_workers=4, worker_batch_size=32, minimum_size_to_dequeue=32, force_download=False)

	Initalizes the data loader with the chosen environment

	Parameters

	
	environment (string) – desired MineRL environment

	data_dir (string, optional) – specify alternative dataset location. Defaults to None.

	num_workers (int, optional) – number of files to load at once. Defaults to 4.

	force_download (bool, optional) – specifies whether or not the data should be downloaded if missing. Defaults to False.

	Returns

	initalized data pipeline

	Return type

	DataPipeline

 minerl.herobraine

minerl.herobraine

	minerl.herobraine
	Handlers

	Agent Handlers
	Agent Start Handlers

	Agent Quit Handlers

	Reward Handlers

	Action Handlers
	Camera

	Craft

	Equip

	Keyboard

	Place

	Smelt

	Chat

	Observation Handlers
	Compass

	Damage Source

	Equipped Item

	Inventory

	Lifestats

	Location Stats

	Base Stats

	POV

	Server Handlers
	Server Start Handlers

	Server Quit Handlers

	World Handlers

Handlers

In addition to the default environments MineRL provides, you can use a variety of custom handlers to build your own.
See the Custom Environment Tutorial [https://minerl.readthedocs.io/en/latest/tutorials/custom_environments.html] to understand how to use these handlers. The following is documentation on all handlers
which MineRL currently supports.

Agent Handlers

Agent Handlers allow you to modify various properties of the agent
(e.g. items in inventory, starting health, what gives the agent reward).

Agent Start Handlers

Agent start handlers define agent start conditions such as inventory items and health.

When used to create a Gym environment, they should be passed to create_agent_start

	
class minerl.herobraine.hero.handlers.agent.start.AgentStartBreakSpeedMultiplier(multiplier=1.0)

	Bases: Handler

Sets the break speed multiplier (how fast the agent can break blocks)

See here for more information: https://minecraft.fandom.com/el/wiki/Breaking

Example usage:

AgentStartBreakSpeedMultiplier(2.0)

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

	
class minerl.herobraine.hero.handlers.agent.start.AgentStartNear(anchor_name='MineRLAgent0', min_distance=2, max_distance=10, max_vert_distance=3)

	Bases: Handler

Starts agent near another agent

Example usage:

AgentStartNear("MineRLAgent0", min_distance=2, max_distance=10, max_vert_distance=3)

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

	
class minerl.herobraine.hero.handlers.agent.start.AgentStartPlacement(x, y, z, yaw, pitch=0.0)

	Bases: Handler

Sets for the agent start location

Example usage:

AgentStartPlacement(x=5, y=70, z=4, yaw=0, pitch=0)

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

	
class minerl.herobraine.hero.handlers.agent.start.InventoryAgentStart(inventory: Dict[int, Dict[str, Union[str, int]]])

	Bases: Handler

Sets the start inventory of the agent by slot id.

Example usage:

InventoryAgentStart({
 0: {'type':'dirt', 'quantity':10},
 # metadata specifies the type of planks (e.g. oak, spruce)
 1: {'type':'planks', 'metadata': 1, 'quantity':5},
 5: {'type':'log', 'quantity':1},
 6: {'type':'log', 'quantity':2},
 32: {'type':'iron_ore', 'quantity':4
})

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

	
class minerl.herobraine.hero.handlers.agent.start.RandomInventoryAgentStart(inventory: Dict[str, Union[str, int]], use_hotbar: bool = False)

	Bases: InventoryAgentStart

Sets the agent start inventory by randomly distributing items throughout its inventory slots.
Note: This has no effect on inventory observation handlers.

Example usage:

RandomInventoryAgentStart(
 {'dirt': 10, 'planks': 5}
)

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

	
class minerl.herobraine.hero.handlers.agent.start.RandomizedStartDecorator

	Bases: Handler

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

	
class minerl.herobraine.hero.handlers.agent.start.SimpleInventoryAgentStart(inventory: List[Dict[str, Union[str, int]]])

	Bases: InventoryAgentStart

Sets the start inventory of the agent sequentially.

Example usage:

SimpleInventoryAgentStart([
 {'type':'dirt', 'quantity':10},
 {'type':'planks', 'quantity':5},
 {'type':'log', 'quantity':1},
 {'type':'iron_ore', 'quantity':4}
])

	
class minerl.herobraine.hero.handlers.agent.start.StartingFoodAgentStart(food: int = 20, food_saturation: Optional[float] = None)

	Bases: Handler

Sets the starting food and/or food saturation of the agent.

Example usage:

StartingFoodAgentStart(food=2.5, food_saturation=1)

:param food: The amount of food the agent starts out with
:param food_saturation: Determines how fast the hunger level depletes, defaults to 5

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

	
class minerl.herobraine.hero.handlers.agent.start.StartingHealthAgentStart(max_health: float = 20, health: Optional[float] = None)

	Bases: Handler

Sets the starting health of the agent

Example usage:

StartingHealthAgentStart(max_health=20, health=2.5)

max_health sets the maximum amount of health the agent can have
health sets amount of health the agent starts with (max_health if not specified)

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

Agent Quit Handlers

These handlers cause the episode to terminate based on certain agent conditions.

When used to create a Gym environment, they should be passed to create_agent_handlers

	
class minerl.herobraine.hero.handlers.agent.quit.AgentQuitFromCraftingItem(items: List[Dict[str, Union[str, int]]])

	Bases: Handler

Terminates episode when agent crafts one of the items in items

Example usage:

AgentQuitFromCraftingItem([
 dict(type="iron_axe", amount=1), dict(type="diamond_block", amount=5)
])

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

	
class minerl.herobraine.hero.handlers.agent.quit.AgentQuitFromPossessingItem(items: List[Dict[str, Union[str, int]]])

	Bases: Handler

Terminates episode when agent obtains one of the items in items

Example usage:

AgentQuitFromPossessingItem([
 dict(type="golden_apple", amount=3), dict(type="diamond", amount=1)
])

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

	
class minerl.herobraine.hero.handlers.agent.quit.AgentQuitFromTouchingBlockType(blocks: List[str])

	Bases: Handler

Terminates episode when agent touches one of the blocks in blocks

Example usage:

AgentQuitFromTouchingBlockType([
 "gold_block", "oak_log"
])

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

Reward Handlers

These handlers modify what things the agent gets rewarded for.

When used to create a Gym environment, they should be passed to create_rewardables

	
class minerl.herobraine.hero.handlers.agent.reward.ConstantReward(constant)

	Bases: RewardHandler

A constant reward handler

	
from_hero(obs_dict)

	By default hero will include the reward in the observation.
This is just a pass through for convenience.
:param obs_dict:
:return: The reward

	
from_universal(x)

	Converts a universal representation of the handler (e.g. universal action/observation)

	
class minerl.herobraine.hero.handlers.agent.reward.RewardForCollectingItems(item_rewards: List[Dict[str, Union[str, int]]])

	Bases: _RewardForPosessingItemBase

The standard malmo reward for collecting item.

Example usage:

RewardForCollectingItems([
 dict(type="log", amount=1, reward=1.0),
])

	
from_universal(x)

	Converts a universal representation of the handler (e.g. universal action/observation)

	
class minerl.herobraine.hero.handlers.agent.reward.RewardForCollectingItemsOnce(item_rewards: List[Dict[str, Union[str, int]]])

	Bases: _RewardForPosessingItemBase

The standard malmo reward for collecting item once.

Example usage:

RewardForCollectingItemsOnce([
 dict(type="log", amount=1, reward=1),
])

	
from_universal(x)

	Converts a universal representation of the handler (e.g. universal action/observation)

	
class minerl.herobraine.hero.handlers.agent.reward.RewardForDistanceTraveledToCompassTarget(reward_per_block: int, density: str = 'PER_TICK')

	Bases: RewardHandler

Creates a reward which is awarded when the player reaches a certain distance from a target.

Example usage:

RewardForDistanceTraveledToCompassTarget(2)

	
from_universal(obs)

	Converts a universal representation of the handler (e.g. universal action/observation)

	
reset()

	

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

	
class minerl.herobraine.hero.handlers.agent.reward.RewardForMissionEnd(reward: int, description: str = 'out_of_time')

	Bases: RewardHandler

Creates a reward which is awarded when a mission ends.

Example usage:

awards a reward of 5 when mission ends
RewardForMissionEnd(reward=5.0, description="mission termination")

	
from_universal(obs)

	Converts a universal representation of the handler (e.g. universal action/observation)

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

	
class minerl.herobraine.hero.handlers.agent.reward.RewardForTouchingBlockType(blocks: List[Dict[str, Union[str, int, float]]])

	Bases: RewardHandler

Creates a reward which is awarded when the player touches a block.

Example usage:

RewardForTouchingBlockType([
 {'type':'diamond_block', 'behaviour':'onceOnly', 'reward':'10'},
])

	
from_universal(obs)

	Converts a universal representation of the handler (e.g. universal action/observation)

	
reset()

	

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

	
class minerl.herobraine.hero.handlers.agent.reward.RewardHandler

	Bases: TranslationHandler

Specifies a reward handler for a task.
These need to be attached to tasks with reinforcement learning objectives.
All rewards need inherit from this reward handler
#Todo: Figure out how this interplays with Hero, as rewards are summed.

	
from_hero(obs_dict)

	By default hero will include the reward in the observation.
This is just a pass through for convenience.
:param obs_dict:
:return: The reward

Action Handlers

Action handlers define what actions agents are allowed to take.

When used to create a gym, you should override create_actionables and pass the action handlers to this function.
See the Custom Environment Tutorial [https://minerl.readthedocs.io/en/latest/tutorials/custom_environments.html] for more.

Camera

	
class minerl.herobraine.hero.handlers.agent.actions.camera.CameraAction

	Bases: Action

Uses <delta_pitch, delta_yaw> vector in degrees to rotate the camera. pitch range [-180, 180], yaw range [-180, 180]

	
from_universal(x)

	Converts a universal representation of the handler (e.g. universal action/observation)

	
to_string()

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

Craft

	
class minerl.herobraine.hero.handlers.agent.actions.craft.CraftAction(items: list, _other=typing.Union[str, NoneType], _default=typing.Union[str, NoneType])

	Bases: ItemListAction

An action handler for crafting items

Note when used alongside Craft Item Nearby, block lists must be disjoint or from_universal will fire multiple
times

	
from_universal(obs)

	Converts a universal representation of the handler (e.g. universal action/observation)

	
to_string()

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

	
class minerl.herobraine.hero.handlers.agent.actions.craft.CraftNearbyAction(items: list, _other=typing.Union[str, NoneType], _default=typing.Union[str, NoneType])

	Bases: CraftAction

An action handler for crafting items when agent is in view of a crafting table

Note when used along side Craft Item, item lists must be disjoint or from_universal will fire multiple times

	
to_string()

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

Equip

	
class minerl.herobraine.hero.handlers.agent.actions.equip.EquipAction(items: list, _default='none', _other='other')

	Bases: ItemWithMetadataListAction

An action handler for observing a list of equipped items

	
from_universal(obs) → str

	Converts a universal representation of the handler (e.g. universal action/observation)

	
logger = <Logger minerl.herobraine.hero.handlers.agent.actions.equip.EquipAction (WARNING)>

	

	
reset()

	

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

Keyboard

	
class minerl.herobraine.hero.handlers.agent.actions.keyboard.KeybasedCommandAction(command, *keys)

	Bases: Action

A command action which is generated from human keypresses in anvil.
Examples of such actions are movement actions, etc.

This is not to be confused with keyboard actions, whereby both anvil and malmo
simulate and act on direct key codes.

Combinations of KeybasedCommandActions yield actions like:

{
 “move” : 1,
 “jump”: 1
}

where move and jump are the commands, which correspond to keys like ‘W’, ‘SPACE’, etc.

This is as opposed to keyboard actions (see the following class definition in keyboard.py)
which yield actions like:

{
 "keyboard" : {
 "W" : 1,
 "A": 1,
 "S": 0,
 "E": 1,
 ...
 }
}

More information can be found in the unification document (internal).

	
from_universal(x)

	Converts a universal representation of the handler (e.g. universal action/observation)

	
to_string()

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Notice how all of the instances of keybased command actions,
of which there will be typically many in an environment spec,
correspond to exactly the same XML stub.

This is discussed at length in the unification proposal
and is a chief example of where manifest consolidation is needed.

Place

	
class minerl.herobraine.hero.handlers.agent.actions.place.PlaceBlock(blocks: list, _other=typing.Union[str, NoneType], _default=typing.Union[str, NoneType])

	Bases: ItemListAction

An action handler for placing a specific block

	
from_universal(obs)

	Converts a universal representation of the handler (e.g. universal action/observation)

	
to_string()

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

Smelt

	
class minerl.herobraine.hero.handlers.agent.actions.smelt.SmeltItemNearby(items: list, _other=typing.Union[str, NoneType], _default=typing.Union[str, NoneType])

	Bases: CraftAction

An action handler for crafting items when agent is in view of a crafting table

Note when used along side Craft Item, block lists must be disjoint or from_universal will fire multiple times

	
from_universal(obs)

	Converts a universal representation of the handler (e.g. universal action/observation)

	
to_string()

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

Chat

	
class minerl.herobraine.hero.handlers.agent.actions.chat.ChatAction

	Bases: Action

Handler which lets agents send Minecraft chat messages

Note: this may currently be limited to the
first agent sending messages (check Malmo for this)

This can be used to execute MINECRAFT COMMANDS !!!

Example usage:

ChatAction()

To summon a creeper, use this action dictionary:

{"chat": "/summon creeper"}

	
from_universal(x)

	Converts a universal representation of the handler (e.g. universal action/observation)

	
to_string()

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

Observation Handlers

Observation handlers define what observation data agents receive (e.g. POV image, lifestats)

When used to create a gym, you should override create_observables and pass the observation handlers to this function.
See the Custom Environment Tutorial [https://minerl.readthedocs.io/en/latest/tutorials/custom_environments.html] for more.

Compass

	
class minerl.herobraine.hero.handlers.agent.observations.compass.CompassObservation(angle=True, distance=False)

	Bases: TranslationHandlerGroup

Defines compass observations.

	Parameters

	
	angle (bool, optional) – Whether or not to include angle observation. Defaults to True.

	distance (bool, optional) – Whether or not ot include distance observation. Defaults to False.

Example usage:

A compass observation object which gives angle and distance information
CompassObservation(True, True)

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

Damage Source

	
class minerl.herobraine.hero.handlers.agent.observations.damage_source.ObservationFromDamageSource

	Bases: TranslationHandlerGroup

Includes the most recent damage event including the amount, type, location, and
other properties.

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

Equipped Item

	
class minerl.herobraine.hero.handlers.agent.observations.equipped_item.EquippedItemObservation(items: Sequence[str], mainhand: bool = True, offhand: bool = False, armor: bool = False, _default: str = 'none', _other: str = 'other')

	Bases: TranslationHandlerGroup

Enables the observation of equipped items in the main, offhand,
and armor slots of the agent.

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

Inventory

	
class minerl.herobraine.hero.handlers.agent.observations.inventory.FlatInventoryObservation(item_list: Sequence[str], _other='other')

	Bases: TranslationHandler

Handles GUI Container Observations for selected items

	
add_to_mission_spec(mission_spec)

	

	
from_hero(obs)

	Converts the Hero observation into a one-hot of the inventory items
for a given inventory container. Ignores variant / color
:param obs:
:return:

	
from_universal(obs)

	Converts a universal representation of the handler (e.g. universal action/observation)

	
logger = <Logger minerl.herobraine.hero.handlers.agent.observations.inventory.FlatInventoryObservation (WARNING)>

	

	
to_string()

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

Lifestats

	
class minerl.herobraine.hero.handlers.agent.observations.lifestats.ObservationFromLifeStats

	Bases: TranslationHandlerGroup

Groups all of the lifestats observations together to correspond to one XML element.

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

Location Stats

	
class minerl.herobraine.hero.handlers.agent.observations.location_stats.ObservationFromCurrentLocation

	Bases: TranslationHandlerGroup

Includes the current biome, how likely rain and snow are there, as well as the current light level, how bright the
sky is, and if the player can see the sky.

Also includes x, y, z, roll, and pitch

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

Base Stats

	
class minerl.herobraine.hero.handlers.agent.observations.mc_base_stats.ObserveFromFullStats(stat_key)

	Bases: TranslationHandlerGroup

Includes the use_item statistics for every item in MC that can be used

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

POV

	
class minerl.herobraine.hero.handlers.agent.observations.pov.POVObservation(video_resolution: Tuple[int, int], include_depth: bool = False)

	Bases: KeymapTranslationHandler

Handles POV observations.

	
from_hero(obs)

	Converts a “hero” representation of an instance of this handler
to a member of the space.

	
to_string()

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

Server Handlers

Server Start Handlers

Server start handlers allow you to set the initial state of the World (e.g. weather, time)

When used to create a Gym environment, they should be passed to create_server_initial_conditions

	
class minerl.herobraine.hero.handlers.server.start.SpawningInitialCondition(allow_spawning: bool)

	Bases: Handler

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

	
class minerl.herobraine.hero.handlers.server.start.TimeInitialCondition(allow_passage_of_time: bool, start_time: Optional[int] = None)

	Bases: Handler

Sets the initial world time as well as whether time can pass.

Example usage:

Sets time to morning and stops passing of time
TimeInitialCondition(False, 23000)

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

	
class minerl.herobraine.hero.handlers.server.start.WeatherInitialCondition(weather: str)

	Bases: Handler

Sets the initial weather condition in the world.

Example usage:

Sets weather to thunder
WeatherInitialCondition("thunder")

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

Server Quit Handlers

These handlers allow episode termination based on server conditions (e.g. time passed)

When used to create a Gym environment, they should be passed to create_server_quit_producers

	
class minerl.herobraine.hero.handlers.server.quit.ServerQuitFromTimeUp(time_limit_ms: int, description='out_of_time')

	Bases: Handler

Forces the server to quit after a certain time_limit_ms
also specifies a description parameter for the xml.

Example usage

ServerQuitFromTimeUp(50000)

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

	
class minerl.herobraine.hero.handlers.server.quit.ServerQuitWhenAnyAgentFinishes

	Bases: Handler

Forces the server to quit if any of the agents involved quits.
Has no parameters.

Example usage:

ServerQuitWhenAnyAgentFinishes()

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

World Handlers

World handlers provide a number of ways to generate and modify the Minecraft world
(e.g. specifying the type of world to be created, like Superflat, or drawing shapes and blocks in the world).

When used to create a Gym environment, they should be passed to create_server_world_generators

	
class minerl.herobraine.hero.handlers.server.world.BiomeGenerator(biome: Union[int, str], force_reset: bool = True)

	Bases: Handler

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

	
class minerl.herobraine.hero.handlers.server.world.DefaultWorldGenerator(force_reset=True, generator_options: str = '{}')

	Bases: Handler

Generates a world using minecraft procedural generation (this is the default world type in minecraft).

	Parameters

	
	force_reset (bool, optional) – If the world should be reset every episode.. Defaults to True.

	generator_options – A JSON object specifying parameters to the procedural generator.

Example usage:

Generates a default world that does not reset every episode (e.g. if blocks get broken in one episode
they will not be replaced in the next)
DefaultWorldGenerator(False, "")

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

	
class minerl.herobraine.hero.handlers.server.world.DrawingDecorator(to_draw: str)

	Bases: Handler

Draws shapes (e.g. spheres, cuboids) in the world.

Example usage:

draws an empty square of gold blocks
DrawingDecorator('
 <DrawCuboid x1="3" y1="4" z1="3" x2="3" y2="6" z2="-3" type="gold_block"/>
 <DrawCuboid x1="3" y1="4" z1="3" x2="-3" y2="6" z2="3" type="gold_block"/>
 <DrawCuboid x1="-3" y1="4" z1="-3" x2="3" y2="6" z2="-3" type="gold_block"/>
 <DrawCuboid x1="-3" y1="4" z1="-3" x2="-3" y2="6" z2="3" type="gold_block"/>
')

See Project Malmo for more

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

	
class minerl.herobraine.hero.handlers.server.world.FileWorldGenerator(filename: str, destroy_after_use: bool = True)

	Bases: Handler

Generates a world from a file.

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

	
class minerl.herobraine.hero.handlers.server.world.FlatWorldGenerator(force_reset: bool = True, generatorString: str = '')

	Bases: Handler

Generates a world that is a flat landscape.

Example usage:

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

	
class minerl.herobraine.hero.handlers.server.world.VillageSpawnDecorator

	Bases: Handler

	
to_string() → str

	The unique identifier for the agent handler.
This is used for constructing action/observation spaces
and unioning different env specifications.

	
xml_template() → str

	Generates an XML representation of the handler.

This XML representation is templated via Jinja2 and
has access to all of the member variables of the class.

Note: This is not an abstract method so that
handlers without corresponding XML’s can be combined in
handler groups with group based XML implementations.

 Python Module Index

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 minerl	

 	
 	
 minerl.data	

 	
 	
 minerl.env._singleagent	

 	
 	
 minerl.env.malmo	

 	
 	
 minerl.herobraine.hero.handlers.agent.actions.camera	

 	
 	
 minerl.herobraine.hero.handlers.agent.actions.chat	

 	
 	
 minerl.herobraine.hero.handlers.agent.actions.craft	

 	
 	
 minerl.herobraine.hero.handlers.agent.actions.equip	

 	
 	
 minerl.herobraine.hero.handlers.agent.actions.keyboard	

 	
 	
 minerl.herobraine.hero.handlers.agent.actions.place	

 	
 	
 minerl.herobraine.hero.handlers.agent.actions.smelt	

 	
 	
 minerl.herobraine.hero.handlers.agent.observations.compass	

 	
 	
 minerl.herobraine.hero.handlers.agent.observations.damage_source	

 	
 	
 minerl.herobraine.hero.handlers.agent.observations.equipped_item	

 	
 	
 minerl.herobraine.hero.handlers.agent.observations.inventory	

 	
 	
 minerl.herobraine.hero.handlers.agent.observations.lifestats	

 	
 	
 minerl.herobraine.hero.handlers.agent.observations.location_stats	

 	
 	
 minerl.herobraine.hero.handlers.agent.observations.mc_base_stats	

 	
 	
 minerl.herobraine.hero.handlers.agent.observations.pov	

 	
 	
 minerl.herobraine.hero.handlers.agent.quit	

 	
 	
 minerl.herobraine.hero.handlers.agent.reward	

 	
 	
 minerl.herobraine.hero.handlers.agent.start	

 	
 	
 minerl.herobraine.hero.handlers.server.quit	

 	
 	
 minerl.herobraine.hero.handlers.server.start	

 	
 	
 minerl.herobraine.hero.handlers.server.world	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W
 | X

_

 	
 	_SingleAgentEnv (class in minerl.env._singleagent)

A

 	
 	action_space (minerl.data.DataPipeline property)

 	actor_name (minerl.env.malmo.MinecraftInstance property)

 	add_existing_instance() (minerl.env.malmo.InstanceManager class method)

 	add_keep_alive() (minerl.env.malmo.InstanceManager class method)

 	add_to_mission_spec() (minerl.herobraine.hero.handlers.agent.observations.inventory.FlatInventoryObservation method)

 	AgentQuitFromCraftingItem (class in minerl.herobraine.hero.handlers.agent.quit)

 	
 	AgentQuitFromPossessingItem (class in minerl.herobraine.hero.handlers.agent.quit)

 	AgentQuitFromTouchingBlockType (class in minerl.herobraine.hero.handlers.agent.quit)

 	AgentStartBreakSpeedMultiplier (class in minerl.herobraine.hero.handlers.agent.start)

 	AgentStartNear (class in minerl.herobraine.hero.handlers.agent.start)

 	AgentStartPlacement (class in minerl.herobraine.hero.handlers.agent.start)

 	allocate_pool() (minerl.env.malmo.InstanceManager class method)

B

 	
 	batch_iter() (minerl.data.DataPipeline method)

 	
 	BiomeGenerator (class in minerl.herobraine.hero.handlers.server.world)

C

 	
 	CameraAction (class in minerl.herobraine.hero.handlers.agent.actions.camera)

 	ChatAction (class in minerl.herobraine.hero.handlers.agent.actions.chat)

 	client_socket (minerl.env.malmo.MinecraftInstance property)

 	client_socket_close() (minerl.env.malmo.MinecraftInstance method)

 	client_socket_recv_message() (minerl.env.malmo.MinecraftInstance method)

 	client_socket_send_message() (minerl.env.malmo.MinecraftInstance method)

 	client_socket_shutdown() (minerl.env.malmo.MinecraftInstance method)

 	close() (minerl.env.malmo.MinecraftInstance method)

 	
 	CompassObservation (class in minerl.herobraine.hero.handlers.agent.observations.compass)

 	configure_malmo_base_port() (minerl.env.malmo.InstanceManager class method)

 	CONSTANT (minerl.env.malmo.SeedType attribute)

 	ConstantReward (class in minerl.herobraine.hero.handlers.agent.reward)

 	CraftAction (class in minerl.herobraine.hero.handlers.agent.actions.craft)

 	CraftNearbyAction (class in minerl.herobraine.hero.handlers.agent.actions.craft)

 	create_multiagent_instance_socket() (minerl.env.malmo.MinecraftInstance method)

 	CustomAsyncRemoteMethod (class in minerl.env.malmo)

D

 	
 	DataPipeline (class in minerl.data)

 	DEFAULT_IP (minerl.env.malmo.InstanceManager attribute)

 	
 	DefaultWorldGenerator (class in minerl.herobraine.hero.handlers.server.world)

 	download() (in module minerl.data)

 	DrawingDecorator (class in minerl.herobraine.hero.handlers.server.world)

E

 	
 	EquipAction (class in minerl.herobraine.hero.handlers.agent.actions.equip)

 	
 	EquippedItemObservation (class in minerl.herobraine.hero.handlers.agent.observations.equipped_item)

F

 	
 	FileWorldGenerator (class in minerl.herobraine.hero.handlers.server.world)

 	FlatInventoryObservation (class in minerl.herobraine.hero.handlers.agent.observations.inventory)

 	FlatWorldGenerator (class in minerl.herobraine.hero.handlers.server.world)

 	from_hero() (minerl.herobraine.hero.handlers.agent.observations.inventory.FlatInventoryObservation method)

 	(minerl.herobraine.hero.handlers.agent.observations.pov.POVObservation method)

 	(minerl.herobraine.hero.handlers.agent.reward.ConstantReward method)

 	(minerl.herobraine.hero.handlers.agent.reward.RewardHandler method)

 	from_universal() (minerl.herobraine.hero.handlers.agent.actions.camera.CameraAction method)

 	(minerl.herobraine.hero.handlers.agent.actions.chat.ChatAction method)

 	(minerl.herobraine.hero.handlers.agent.actions.craft.CraftAction method)

 	(minerl.herobraine.hero.handlers.agent.actions.equip.EquipAction method)

 	(minerl.herobraine.hero.handlers.agent.actions.keyboard.KeybasedCommandAction method)

 	(minerl.herobraine.hero.handlers.agent.actions.place.PlaceBlock method)

 	(minerl.herobraine.hero.handlers.agent.actions.smelt.SmeltItemNearby method)

 	(minerl.herobraine.hero.handlers.agent.observations.inventory.FlatInventoryObservation method)

 	(minerl.herobraine.hero.handlers.agent.reward.ConstantReward method)

 	(minerl.herobraine.hero.handlers.agent.reward.RewardForCollectingItems method)

 	(minerl.herobraine.hero.handlers.agent.reward.RewardForCollectingItemsOnce method)

 	(minerl.herobraine.hero.handlers.agent.reward.RewardForDistanceTraveledToCompassTarget method)

 	(minerl.herobraine.hero.handlers.agent.reward.RewardForMissionEnd method)

 	(minerl.herobraine.hero.handlers.agent.reward.RewardForTouchingBlockType method)

G

 	
 	GENERATED (minerl.env.malmo.SeedType attribute)

 	get_index() (minerl.env.malmo.SeedType class method)

 	
 	get_instance() (minerl.env.malmo.InstanceManager class method)

 	get_output() (minerl.env.malmo.MinecraftInstance method)

 	get_trajectory_names() (minerl.data.DataPipeline method)

H

 	
 	had_to_clean (minerl.env.malmo.MinecraftInstance property)

 	has_client_socket() (minerl.env.malmo.MinecraftInstance method)

 	
 	headless (minerl.env.malmo.InstanceManager attribute)

 	host (minerl.env.malmo.MinecraftInstance property)

I

 	
 	InstanceManager (class in minerl.env.malmo)

 	
 	InventoryAgentStart (class in minerl.herobraine.hero.handlers.agent.start)

 	is_remote() (minerl.env.malmo.InstanceManager class method)

J

 	
 	jdwp_port (minerl.env.malmo.MinecraftInstance property)

K

 	
 	KEEP_ALIVE_PYRO_FREQUENCY (minerl.env.malmo.InstanceManager attribute)

 	
 	KeybasedCommandAction (class in minerl.herobraine.hero.handlers.agent.actions.keyboard)

 	kill() (minerl.env.malmo.MinecraftInstance method)

L

 	
 	launch() (minerl.env.malmo.MinecraftInstance method)

 	launch_instance_manager() (in module minerl.env.malmo)

 	launch_queue_logger_thread() (in module minerl.env.malmo)

 	
 	load_data() (minerl.data.DataPipeline method)

 	logger (minerl.herobraine.hero.handlers.agent.actions.equip.EquipAction attribute)

 	(minerl.herobraine.hero.handlers.agent.observations.inventory.FlatInventoryObservation attribute)

M

 	
 	make() (in module minerl.data)

 	managed (minerl.env.malmo.InstanceManager attribute)

 	MAX_PIPE_LENGTH (minerl.env.malmo.MinecraftInstance attribute)

 	MAXINSTANCES (minerl.env.malmo.InstanceManager attribute)

 	MINECRAFT_DIR (minerl.env.malmo.InstanceManager attribute)

 	MinecraftInstance (class in minerl.env.malmo)

 	
 minerl.data

 	module

 	
 minerl.env._singleagent

 	module

 	
 minerl.env.malmo

 	module

 	
 minerl.herobraine.hero.handlers.agent.actions.camera

 	module

 	
 minerl.herobraine.hero.handlers.agent.actions.chat

 	module

 	
 minerl.herobraine.hero.handlers.agent.actions.craft

 	module

 	
 minerl.herobraine.hero.handlers.agent.actions.equip

 	module

 	
 minerl.herobraine.hero.handlers.agent.actions.keyboard

 	module

 	
 minerl.herobraine.hero.handlers.agent.actions.place

 	module

 	
 minerl.herobraine.hero.handlers.agent.actions.smelt

 	module

 	
 minerl.herobraine.hero.handlers.agent.observations.compass

 	module

 	
 minerl.herobraine.hero.handlers.agent.observations.damage_source

 	module

 	
 minerl.herobraine.hero.handlers.agent.observations.equipped_item

 	module

 	
 minerl.herobraine.hero.handlers.agent.observations.inventory

 	module

 	
 minerl.herobraine.hero.handlers.agent.observations.lifestats

 	module

 	
 minerl.herobraine.hero.handlers.agent.observations.location_stats

 	module

 	
 minerl.herobraine.hero.handlers.agent.observations.mc_base_stats

 	module

 	
 	
 minerl.herobraine.hero.handlers.agent.observations.pov

 	module

 	
 minerl.herobraine.hero.handlers.agent.quit

 	module

 	
 minerl.herobraine.hero.handlers.agent.reward

 	module

 	
 minerl.herobraine.hero.handlers.agent.start

 	module

 	
 minerl.herobraine.hero.handlers.server.quit

 	module

 	
 minerl.herobraine.hero.handlers.server.start

 	module

 	
 minerl.herobraine.hero.handlers.server.world

 	module

 	
 module

 	minerl.data

 	minerl.env._singleagent

 	minerl.env.malmo

 	minerl.herobraine.hero.handlers.agent.actions.camera

 	minerl.herobraine.hero.handlers.agent.actions.chat

 	minerl.herobraine.hero.handlers.agent.actions.craft

 	minerl.herobraine.hero.handlers.agent.actions.equip

 	minerl.herobraine.hero.handlers.agent.actions.keyboard

 	minerl.herobraine.hero.handlers.agent.actions.place

 	minerl.herobraine.hero.handlers.agent.actions.smelt

 	minerl.herobraine.hero.handlers.agent.observations.compass

 	minerl.herobraine.hero.handlers.agent.observations.damage_source

 	minerl.herobraine.hero.handlers.agent.observations.equipped_item

 	minerl.herobraine.hero.handlers.agent.observations.inventory

 	minerl.herobraine.hero.handlers.agent.observations.lifestats

 	minerl.herobraine.hero.handlers.agent.observations.location_stats

 	minerl.herobraine.hero.handlers.agent.observations.mc_base_stats

 	minerl.herobraine.hero.handlers.agent.observations.pov

 	minerl.herobraine.hero.handlers.agent.quit

 	minerl.herobraine.hero.handlers.agent.reward

 	minerl.herobraine.hero.handlers.agent.start

 	minerl.herobraine.hero.handlers.server.quit

 	minerl.herobraine.hero.handlers.server.start

 	minerl.herobraine.hero.handlers.server.world

N

 	
 	ninstances (minerl.env.malmo.InstanceManager attribute)

 	
 	NONE (minerl.env.malmo.SeedType attribute)

O

 	
 	observation_space (minerl.data.DataPipeline property)

 	ObservationFromCurrentLocation (class in minerl.herobraine.hero.handlers.agent.observations.location_stats)

 	
 	ObservationFromDamageSource (class in minerl.herobraine.hero.handlers.agent.observations.damage_source)

 	ObservationFromLifeStats (class in minerl.herobraine.hero.handlers.agent.observations.lifestats)

 	ObserveFromFullStats (class in minerl.herobraine.hero.handlers.agent.observations.mc_base_stats)

P

 	
 	PlaceBlock (class in minerl.herobraine.hero.handlers.agent.actions.place)

 	
 	port (minerl.env.malmo.MinecraftInstance property)

 	POVObservation (class in minerl.herobraine.hero.handlers.agent.observations.pov)

R

 	
 	RandomInventoryAgentStart (class in minerl.herobraine.hero.handlers.agent.start)

 	RandomizedStartDecorator (class in minerl.herobraine.hero.handlers.agent.start)

 	read_frame() (minerl.data.DataPipeline static method)

 	release_lock() (minerl.env.malmo.MinecraftInstance method)

 	REMOTE (minerl.env.malmo.InstanceManager attribute)

 	render() (minerl.env._singleagent._SingleAgentEnv method)

 	reset() (minerl.env._singleagent._SingleAgentEnv method)

 	(minerl.herobraine.hero.handlers.agent.actions.equip.EquipAction method)

 	(minerl.herobraine.hero.handlers.agent.reward.RewardForDistanceTraveledToCompassTarget method)

 	(minerl.herobraine.hero.handlers.agent.reward.RewardForTouchingBlockType method)

 	
 	RewardForCollectingItems (class in minerl.herobraine.hero.handlers.agent.reward)

 	RewardForCollectingItemsOnce (class in minerl.herobraine.hero.handlers.agent.reward)

 	RewardForDistanceTraveledToCompassTarget (class in minerl.herobraine.hero.handlers.agent.reward)

 	RewardForMissionEnd (class in minerl.herobraine.hero.handlers.agent.reward)

 	RewardForTouchingBlockType (class in minerl.herobraine.hero.handlers.agent.reward)

 	RewardHandler (class in minerl.herobraine.hero.handlers.agent.reward)

S

 	
 	sarsd_iter() (minerl.data.DataPipeline method)

 	SCHEMAS_DIR (minerl.env.malmo.InstanceManager attribute)

 	SeedType (class in minerl.env.malmo)

 	seq_iter() (minerl.data.DataPipeline method)

 	ServerQuitFromTimeUp (class in minerl.herobraine.hero.handlers.server.quit)

 	ServerQuitWhenAnyAgentFinishes (class in minerl.herobraine.hero.handlers.server.quit)

 	set_valid_jdwp_port_for_instance() (minerl.env.malmo.InstanceManager class method)

 	shutdown() (minerl.env.malmo.InstanceManager class method)

 	SimpleInventoryAgentStart (class in minerl.herobraine.hero.handlers.agent.start)

 	
 	SmeltItemNearby (class in minerl.herobraine.hero.handlers.agent.actions.smelt)

 	SpawningInitialCondition (class in minerl.herobraine.hero.handlers.server.start)

 	spec (minerl.data.DataPipeline property)

 	SPECIFIED (minerl.env.malmo.SeedType attribute)

 	StartingFoodAgentStart (class in minerl.herobraine.hero.handlers.agent.start)

 	StartingHealthAgentStart (class in minerl.herobraine.hero.handlers.agent.start)

 	STATUS_DIR (minerl.env.malmo.InstanceManager attribute)

 	status_dir (minerl.env.malmo.MinecraftInstance property)

 	step() (minerl.env._singleagent._SingleAgentEnv method)

T

 	
 	TimeInitialCondition (class in minerl.herobraine.hero.handlers.server.start)

 	to_string() (minerl.herobraine.hero.handlers.agent.actions.camera.CameraAction method)

 	(minerl.herobraine.hero.handlers.agent.actions.chat.ChatAction method)

 	(minerl.herobraine.hero.handlers.agent.actions.craft.CraftAction method)

 	(minerl.herobraine.hero.handlers.agent.actions.craft.CraftNearbyAction method)

 	(minerl.herobraine.hero.handlers.agent.actions.keyboard.KeybasedCommandAction method)

 	(minerl.herobraine.hero.handlers.agent.actions.place.PlaceBlock method)

 	(minerl.herobraine.hero.handlers.agent.actions.smelt.SmeltItemNearby method)

 	(minerl.herobraine.hero.handlers.agent.observations.compass.CompassObservation method)

 	(minerl.herobraine.hero.handlers.agent.observations.damage_source.ObservationFromDamageSource method)

 	(minerl.herobraine.hero.handlers.agent.observations.equipped_item.EquippedItemObservation method)

 	(minerl.herobraine.hero.handlers.agent.observations.inventory.FlatInventoryObservation method)

 	(minerl.herobraine.hero.handlers.agent.observations.lifestats.ObservationFromLifeStats method)

 	(minerl.herobraine.hero.handlers.agent.observations.location_stats.ObservationFromCurrentLocation method)

 	(minerl.herobraine.hero.handlers.agent.observations.mc_base_stats.ObserveFromFullStats method)

 	(minerl.herobraine.hero.handlers.agent.observations.pov.POVObservation method)

 	(minerl.herobraine.hero.handlers.agent.quit.AgentQuitFromCraftingItem method)

 	(minerl.herobraine.hero.handlers.agent.quit.AgentQuitFromPossessingItem method)

 	(minerl.herobraine.hero.handlers.agent.quit.AgentQuitFromTouchingBlockType method)

 	(minerl.herobraine.hero.handlers.agent.reward.RewardForDistanceTraveledToCompassTarget method)

 	(minerl.herobraine.hero.handlers.agent.reward.RewardForMissionEnd method)

 	(minerl.herobraine.hero.handlers.agent.reward.RewardForTouchingBlockType method)

 	(minerl.herobraine.hero.handlers.agent.start.AgentStartBreakSpeedMultiplier method)

 	(minerl.herobraine.hero.handlers.agent.start.AgentStartNear method)

 	(minerl.herobraine.hero.handlers.agent.start.AgentStartPlacement method)

 	(minerl.herobraine.hero.handlers.agent.start.InventoryAgentStart method)

 	(minerl.herobraine.hero.handlers.agent.start.RandomizedStartDecorator method)

 	(minerl.herobraine.hero.handlers.agent.start.StartingFoodAgentStart method)

 	(minerl.herobraine.hero.handlers.agent.start.StartingHealthAgentStart method)

 	(minerl.herobraine.hero.handlers.server.quit.ServerQuitFromTimeUp method)

 	(minerl.herobraine.hero.handlers.server.quit.ServerQuitWhenAnyAgentFinishes method)

 	(minerl.herobraine.hero.handlers.server.start.SpawningInitialCondition method)

 	(minerl.herobraine.hero.handlers.server.start.TimeInitialCondition method)

 	(minerl.herobraine.hero.handlers.server.start.WeatherInitialCondition method)

 	(minerl.herobraine.hero.handlers.server.world.BiomeGenerator method)

 	(minerl.herobraine.hero.handlers.server.world.DefaultWorldGenerator method)

 	(minerl.herobraine.hero.handlers.server.world.DrawingDecorator method)

 	(minerl.herobraine.hero.handlers.server.world.FileWorldGenerator method)

 	(minerl.herobraine.hero.handlers.server.world.FlatWorldGenerator method)

 	(minerl.herobraine.hero.handlers.server.world.VillageSpawnDecorator method)

V

 	
 	VillageSpawnDecorator (class in minerl.herobraine.hero.handlers.server.world)

W

 	
 	WeatherInitialCondition (class in minerl.herobraine.hero.handlers.server.start)

X

 	
 	X11_DIR (minerl.env.malmo.InstanceManager attribute)

 	xml_template() (minerl.herobraine.hero.handlers.agent.actions.camera.CameraAction method)

 	(minerl.herobraine.hero.handlers.agent.actions.chat.ChatAction method)

 	(minerl.herobraine.hero.handlers.agent.actions.craft.CraftAction method)

 	(minerl.herobraine.hero.handlers.agent.actions.craft.CraftNearbyAction method)

 	(minerl.herobraine.hero.handlers.agent.actions.equip.EquipAction method)

 	(minerl.herobraine.hero.handlers.agent.actions.keyboard.KeybasedCommandAction method)

 	(minerl.herobraine.hero.handlers.agent.actions.place.PlaceBlock method)

 	(minerl.herobraine.hero.handlers.agent.actions.smelt.SmeltItemNearby method)

 	(minerl.herobraine.hero.handlers.agent.observations.compass.CompassObservation method)

 	(minerl.herobraine.hero.handlers.agent.observations.damage_source.ObservationFromDamageSource method)

 	(minerl.herobraine.hero.handlers.agent.observations.equipped_item.EquippedItemObservation method)

 	(minerl.herobraine.hero.handlers.agent.observations.inventory.FlatInventoryObservation method)

 	(minerl.herobraine.hero.handlers.agent.observations.lifestats.ObservationFromLifeStats method)

 	(minerl.herobraine.hero.handlers.agent.observations.location_stats.ObservationFromCurrentLocation method)

 	(minerl.herobraine.hero.handlers.agent.observations.mc_base_stats.ObserveFromFullStats method)

 	(minerl.herobraine.hero.handlers.agent.observations.pov.POVObservation method)

 	(minerl.herobraine.hero.handlers.agent.quit.AgentQuitFromCraftingItem method)

 	(minerl.herobraine.hero.handlers.agent.quit.AgentQuitFromPossessingItem method)

 	(minerl.herobraine.hero.handlers.agent.quit.AgentQuitFromTouchingBlockType method)

 	(minerl.herobraine.hero.handlers.agent.reward.RewardForDistanceTraveledToCompassTarget method)

 	(minerl.herobraine.hero.handlers.agent.reward.RewardForMissionEnd method)

 	(minerl.herobraine.hero.handlers.agent.reward.RewardForTouchingBlockType method)

 	(minerl.herobraine.hero.handlers.agent.start.AgentStartBreakSpeedMultiplier method)

 	(minerl.herobraine.hero.handlers.agent.start.AgentStartNear method)

 	(minerl.herobraine.hero.handlers.agent.start.AgentStartPlacement method)

 	(minerl.herobraine.hero.handlers.agent.start.InventoryAgentStart method)

 	(minerl.herobraine.hero.handlers.agent.start.RandomInventoryAgentStart method)

 	(minerl.herobraine.hero.handlers.agent.start.RandomizedStartDecorator method)

 	(minerl.herobraine.hero.handlers.agent.start.StartingFoodAgentStart method)

 	(minerl.herobraine.hero.handlers.agent.start.StartingHealthAgentStart method)

 	(minerl.herobraine.hero.handlers.server.quit.ServerQuitFromTimeUp method)

 	(minerl.herobraine.hero.handlers.server.quit.ServerQuitWhenAnyAgentFinishes method)

 	(minerl.herobraine.hero.handlers.server.start.SpawningInitialCondition method)

 	(minerl.herobraine.hero.handlers.server.start.TimeInitialCondition method)

 	(minerl.herobraine.hero.handlers.server.start.WeatherInitialCondition method)

 	(minerl.herobraine.hero.handlers.server.world.BiomeGenerator method)

 	(minerl.herobraine.hero.handlers.server.world.DefaultWorldGenerator method)

 	(minerl.herobraine.hero.handlers.server.world.DrawingDecorator method)

 	(minerl.herobraine.hero.handlers.server.world.FileWorldGenerator method)

 	(minerl.herobraine.hero.handlers.server.world.FlatWorldGenerator method)

 	(minerl.herobraine.hero.handlers.server.world.VillageSpawnDecorator method)

 <no title>

 Agent Handlers

Agent Handlers

Agent handlers allow you to customize the agent in the environment. These are things like
how much health the agent starts with, how much reward it gets from certain things…

Quit Handlers

	
AgentQuitFromTouchingBlockType : (List(Str))

	An RGB image observation of
the agent’s first-person perspective.

	Type

	np.uint8

 <no title>

_images/waterfall8_0-30.gif

_images/waterfall2_0-30.gif

_images/waterfall6_0-30.gif

_images/compass_angle.png
Compass angle over the episode

100 ‘ ’

-100

0 1000 2000 3000 4000 5000 6000

_static/file.png

_images/compass_angle_better.png
100

-100

Compass angle over the episode

50

100

150

200

250

300

350

400

_static/minus.png

_images/caves4_0-30.gif

_images/caves5_0-30.gif

_images/house_0_0-05.gif

_images/house_1_0-30.gif

_images/cropped_viewer.gif
IO e o e

_static/plus.png

_images/demo.gif

_images/house_3_1-00.gif

_images/house_long_7-00.gif

_images/block.png

_images/caves1_0-05.gif

_images/animal_pen_village4_0-05.gif

_images/animal_pen_village4_1-00.gif

_images/caves3_0-30.gif

nav.xhtml

 Table of Contents

 		
 MineRL: Towards AI in Minecraft

 		
 Installation

 		
 Hello World: Your First Agent

 		
 Creating an environment

 		
 Taking actions

 		
 No-op actions and a better policy

 		
 Downloading and Sampling The Dataset

 		
 Introduction

 		
 Setting up environment variables

 		
 Downloading the MineRL Dataset with minerl.data.download

 		
 Sampling the Dataset with buffered_batch_iter

 		
 Moderate Human Demonstrations

 		
 K-means exploration

 		
 Visualizing The Data minerl.viewer

 		
 Interactive Mode minerl.interactor

 		
 Creating A Custom Environment

 		
 Introduction

 		
 Setup

 		
 Contruct the Environment Class

 		
 Modify the World

 		
 Set the Initial Agent Inventory

 		
 Create Reward Functionality

 		
 Construct a Quit Handler

 		
 Allow the Agent to Place Water

 		
 Give Extra Observations

 		
 Set the Time

 		
 Other Functions to Implement

 		
 Using the Environment

 		
 Using Minecraft Commands

 		
 Introduction

 		
 How Can MC Commands speed up training?

 		
 Adding the ChatAction to your envspec

 		
 Abstracted Command Sending

 		
 Advanced use

 		
 General Information

 		
 Environment Handlers

 		
 Environment Handlers

 		
 Spaces

 		
 Enum Spaces

 		
 Observations

 		
 Visual Observations - pov, third-person

 		
 Equip Observations - equipped_items

 		
 Actions

 		
 Camera Control - camera

 		
 Tool Control - equip and use

 		
 MineRL Diamond Competition Intro Track Environments

 		
 MineRLTreechop-v0

 		
 Observation Space

 		
 Action Space

 		
 Usage

 		
 MineRLNavigate-v0

 		
 Observation Space

 		
 Action Space

 		
 Usage

 		
 MineRLNavigateDense-v0

 		
 Observation Space

 		
 Action Space

 		
 Usage

 		
 MineRLNavigateExtreme-v0

 		
 Observation Space

 		
 Action Space

 		
 Usage

 		
 MineRLNavigateExtremeDense-v0

 		
 Observation Space

 		
 Action Space

 		
 Usage

 		
 MineRLObtainDiamond-v0

 		
 Observation Space

 		
 Action Space

 		
 Usage

 		
 MineRLObtainDiamondDense-v0

 		
 Observation Space

 		
 Action Space

 		
 Usage

 		
 MineRLObtainIronPickaxe-v0

 		
 Observation Space

 		
 Action Space

 		
 Usage

 		
 MineRLObtainIronPickaxeDense-v0

 		
 Observation Space

 		
 Action Space

 		
 Usage

 		
 MineRL Diamond Competition Research Track Environments

 		
 MineRLTreechopVectorObf-v0

 		
 Observation Space

 		
 Action Space

 		
 Usage

 		
 MineRLNavigateVectorObf-v0

 		
 Observation Space

 		
 Action Space

 		
 Usage

 		
 MineRLNavigateDenseVectorObf-v0

 		
 Observation Space

 		
 Action Space

 		
 Usage

 		
 MineRLNavigateExtremeVectorObf-v0

 		
 Observation Space

 		
 Action Space

 		
 Usage

 		
 MineRLNavigateExtremeDenseVectorObf-v0

 		
 Observation Space

 		
 Action Space

 		
 Usage

 		
 MineRLObtainDiamondVectorObf-v0

 		
 Observation Space

 		
 Action Space

 		
 Usage

 		
 MineRLObtainDiamondDenseVectorObf-v0

 		
 Observation Space

 		
 Action Space

 		
 Usage

 		
 MineRLObtainIronPickaxeVectorObf-v0

 		
 Observation Space

 		
 Action Space

 		
 Usage

 		
 MineRLObtainIronPickaxeDenseVectorObf-v0

 		
 Observation Space

 		
 Action Space

 		
 Usage

 		
 MineRL BASALT Competition Environments

 		
 MineRLBasaltFindCave-v0

 		
 Observation Space

 		
 Action Space

 		
 Starting Inventory

 		
 Usage

 		
 MineRLBasaltMakeWaterfall-v0

 		
 Observation Space

 		
 Action Space

 		
 Starting Inventory

 		
 Usage

 		
 MineRLBasaltCreateVillageAnimalPen-v0

 		
 Observation Space

 		
 Action Space

 		
 Starting Inventory

 		
 Usage

 		
 MineRLBasaltBuildVillageHouse-v0

 		
 Observation Space

 		
 Action Space

 		
 Starting Inventory

 		
 Usage

 		
 Performance tips

 		
 Slowdown in obfuscated environments

 		
 Faster alternative to xvfb

 		
 Links to papers and projects

 		
 Presentations

 		
 MineRL papers

 		
 2019 competitor code/papers

 		
 2020 competitor code/papers

 		
 Other papers that use the MineRL environment

 		
 Other

 		
 Windows FAQ

 		
 The The system cannot find the path specified error (installing)

 		
 The freeze_support error (multiprocessing)

 		
 minerl.env

 		
 MineRLEnv

 		
 InstanceManager

 		
 minerl.data

 		
 MineRLv0

 		
 minerl.herobraine

 		
 Handlers

 		
 Agent Handlers

 		
 Agent Start Handlers

 		
 Agent Quit Handlers

 		
 Reward Handlers

 		
 Action Handlers

 		
 Observation Handlers

 		
 Server Handlers

 		
 Server Start Handlers

 		
 Server Quit Handlers

 		
 World Handlers

_images/animal_pen_village1_1-00.gif

_images/navigate2.mp4.gif

_images/animal_pen_village3_0-30.gif

_images/navigate3.mp4.gif

_images/mlg_water_bucket.gif

_images/navigate1.mp4.gif

_images/navigateextreme2.mp4.g